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ABSTRACT 

In the foregoing,  a r e l a t iv i s t i c  kinet ic  theory  desc r ip t ion  of 

the in t e rac t ion  of a plane p-polar ized  e lec t romagnet ic  wave obliquely 

incident  on a hot p l a s m a  half space  and p l a s m a  s l a b  is developed. 

Laplace  t r a n s f o r m  technique together  with the rad ia t ion  condition and 

the condition of specu la r  re f lec t ion  of the e l ec t rons  a t  the in t e r f ace  

i s  used  to obtain unique l i nea r i zed  solut ions fo r  the f ie lds  and the 

p a r t i c l e  d i s t r ibu t ion  in  a p l a s m a  half space .  

modified to t r e a t  the c a s e  of the p l a s m a  s lab.  

cons is tency  is p resen ted  in  the t r e a t m e n t  of both the s l ab  and the 

ha l f - space  p r o b l e m s  

of the in t e rac t ion  i s  d i scussed  in  the c a s e  of the p l a s m a  half space .  

Power  re f lec t ion  and t r a n s m i s s i o n  coeff ic ients  a r e  obtained f o r  both 

The 

The above p rocedure  is 

A proof of self- 

The e l emen ta ry  nan-equi l ibr ium the rmodynamics  

p r o b l e m s  

The above theory  i s  then appl ied to s e v e r a l  p rob lems  in  the 
2 

m e  
l i m i t  of l a r g e  p = - KT 

and the depths  of pene t ra t ion  are computed f o r  the half space .  

equivalent F o u r i e r  s e r i e s  r ep resen ta t ion  is p resen ted  for  the s l a b  c a s e  

0 The c r i t i c a l  angle  of incidence i s  obtained 

The 

with no l imi ta t ions  placed on (3. A c u r s o r y  s tudy of the geomet r i ca l  

r e sonances  in  the l a r g e  p l i m i t  i s  a l s o  p re sen ted .  

i 
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I. INTRODUCTION 

The kinetic theory description of the interaction of a plane 

electromagnetic wave with semi-infinite and slab plasmas has been a 

subject of considerable interest in recent years. In a pair of 

important papers, Silin,' and Silin and Fetisov2 investigated the 

reflection and transmission properties of a plasma half space for 

both perpendicular and oblique incidence using a relativistic treatment 

to describe the plasma. Both "s" and "p" polarizations were 
ft 

considered. While the penetration problem was examined in detail, 

essentially no derivation was given for the field quantities in the 

medium. Tayl~r,~ and later, Com~tock,~ using different mathematical 

techniques, supplied some of the details on the derivation of electric 

and magnetic fields within the plasma for the case of normal incidence. 

Discrepancies between Taylor's and Comstock's results were later 

resolved by Taylor.' 6 Shure and Felderhof7 also studied the half space 

problem using a non-relativistic normal mode approach. 

however, does indicate how to treat the relativistic case for the 

normal incidence half space problem. 

Felderhof, 

Weston8 extended Felderhof ' s  

non-relativistic analysis to the case of oblique incidence of a 

ak 
A wave whose electric field vector is perpendicular to the 

plane of incidence is said to be s-polarized whereas a p-polarized 
wave has its electric field vector parallel to the plane of incidence. 
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9 ** 
p-polarized wave. Weibel computed the analomous skin depth for the 

case of normal incidence on a non-relativistic plasma half space. 

definition of the skin depth which he uses is somewhat different from 

The 

that used by Silin and the nonrelativistic limit of Silin's results are 

not in exact agreement with those of Weibel. 

Reflection and transmission of a plane electromagnetic wave at 

the boundaries of a plasma slab has also received considerable attention. 

While Taylor's relativistic treatment was concerned with normal incidence 

Kondratenko and Miroshnichenko, 'OY1' and Bowman and Weston12 considered 

the case of oblique incidence for the non-relativistic problem. 

former considered both 

The 

s- and p-polarizations using a Fourier series 

expansion while the latter, using a normal mode analysis, considered 

p-polarization only. Hinton13 s tudied the collisionless absorption and 

emission of an obliquely incident p-polarized wave incident on both 

sides of a non-relativistic plasma layer. 

Qzizmir14 has recently investigated the oblique incidence of an 

s-polarized wave on a plasma half space"and slab using relativistic 

kinetic theory. The relativistic treatment is desirable for several 

reasons. First, it eliminates non-physical results such as the Landau 

damping of transverse waves. Such damping cannot occur since the phase 

velocity of the transverse wave is greater than the speed of light and 

** 
The term "anomolous skin depth" is used to characterize 

non-collisional absorption of electromagnetic waves incident on a 
medium when the wave's depth of penetration is much smaller than the 
average distance covered by an electron near the surface during one 
period of field oscillation. 
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no p a r t i c l e s  can be  i n  resonance with t h i s  wave. Also ,  i t  gives  a 

cor rec t  b a s i s  f o r  obtaining temperature cor rec t ions  t o  cold plasma 

theory. 

Ozizmir's ana lys i s ,  which is  d i f f e r e n t  from t h a t  of previous 

authors,  is based on the  Laplace transform technique. Assuming specular  

r e f l e c t i o n  of t h e  p a r t i c l e s  a t  t he  i n t e r f a c e  and imposing the  "radiat ion 

condition" on a l l  f i e l d  so lu t ions ,  h e  determined uniquely the  s t a t iona ry  

so lu t ion  t o  the  coupled Maxwell-Vlasov equations.  The so lu t ion  f o r  t he  

s l a b  plasma w a s  obtained by modifying the  techniques used i n  the  ha l f  

space problem. 

The present  ana lys i s  is an extension of Ozizmir's work t o  the  

case where the  inc ident  electric f i e l d  l ies i n  the  plane of incidence 

(p-polarization) as shown i n  Figure 1. I n  con t r a s t  t o  t he  

s-polar izat ion case, where only t ransverse  waves are set up i n  t h e  

plasma, both longi tudina l  and t ransverse  waves are found i n  the  medium. 

Assuming t h a t  t he  p a r t i c l e s  are r e f l e c t e d  specular ly  a t  t h e  

i n t e r f a c e ( s ) ,  w e  ob ta in  rigorous f i r s t  o rder  so lu t ions  f o r  a l l  f i e l d  

quan t i t i e s  v a l i d  a t  a r b i t r a r y  angles of incidence f o r  both the  plasma 

ha l f  space and s l a b  problems. I n  Section 2 ,  w e  s ta te  t h e  bas i c  

equations adopted f o r  t he  descr ip t ion  of t he  ha l f  space problem and 

ob ta in  e x p l i c i t  expressions f o r  Ex(x) , EZ(x) , and By(x) . Making 

use of these so lu t ions ,  w e  determine uniquely t h e  perturbed p a r t i c l e  

d i s t r i b u t i o n  and give a proof of self consistency. 

r e f l e c t i o n  and transmission coe f f i c i en t s  are a l s o  obtained, and the  

Expressions f o r  the  

thermodynamics of the  in t e rac t ion  i s  inves t iga ted .  Sect ion 3 is devoted 



dielectric 

- 4 -  

plasma 

2 axis 

Figure 1. Wave Plasma Interaction 
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t o  modifying t h e  above approach t o  treat  the  s l ab  case. 

f o r  Ex(x) , EZ(x) , and B (x) are given. W e  ob ta in  the  perturbed 

p a r t i c l e  d i s t r i b u t i o n ,  give a proof of s e l f  consistency, and ca l cu la t e  

the  r e f l e c t i o n  and transmission coe f f i c i en t s .  The approximate evalua- 

t i o n  of complicated i n t e g r a l  expressions and the  physical  i n t e r p r e t a t i o n  

of the  r e s u l t s  are l e f t  t o  Section 4 .  In  the  case of the  plasma ha l f  

space, w e  obtain an expression f o r  t he  c r i t i c a l  angle of incidence and 

Expressions 

Y 

ca l cu la t e  t he  complex depths of penetrat ion.  

s t rong  s p a t i a l  d i spers ion  are discussed i n  some d e t a i l .  

equivalent Fourier series so lu t ions  f o r  Ex(x) , EZ(x) , and By(x) 

i n  the  s l a b  geometry and inves t iga t e  the  geometrical resonances. 

F ina l ly ,  the  Appendices contain a l l  der ivat ions and proofs too lengthy 

t o  be included i n  the  body of the  t e x t .  

The concepts of weak and 

W e  obtain the  
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2. PLASMA HALF SPACE PROBLEM 

2.1 Basic Equations 

The i n t e r a c t i o n  of a low i n t e n s i t y  plane electromagnetic wave 

obliquely inc iden t  on hot semi-infinite and s l a b  plasmas can be 

described by the  l i nea r i zed  r e l a t i v i s t i c  Vlasov equation coupled t o  t h e  

Maxwell equations. The use of l i nea r i zed  theory i s  based on t h e  

assumption t h a t  t h e  energy dens i ty  of the  inc ident  wave i s  much smaller 

than t h e  i n t e r n a l  energy dens i ty  of t he  plasma. The inc ident  wave 

per turbs  the  quiescent plasma and sets up e l e c t r i c  and magnetic f i e l d s  

wi th in  t h e  ionized medium. These f i e l d  q u a n t i t i e s ,  as w e l l  as t h e  

r e f l e c t e d  f i e l d s ,  can be obtained by using t h e  concepts of s e l f -  

cons i s t en t  f i e l d  theory. 

problem, w e  assume t h e  wave-plasma system has a t t a i n e d  a new 

equilibrium--a quasi-equilibrium s ince  the  inc iden t  wave hea t s  t h e  

plasma, a second order e f f e c t .  A l l  temporal t r a n s i e n t  f i e l d s  are 

assumed negl ig ib ly  s m a l l .  

t i m e  l i m i t  of t he  considerably more d i f f i c u l t  "mixed i n i t i a l  value- 

boundary value" problem. 

I n  t h e  desc r ip t ion  of such a boundary va lue  

I n  e f f e c t ,  w e  are descr ib ing  t h e  asymptotic 

The ions  are assumed t o  form a uniform neu t r a l i z ing  background. 

Basically,  t h i s  assumes t h a t  t h e  frequency w of the  inc ident  wave is 

much g r e a t e r  than t h e  ion  plasma frequency w . Ionic  e f f e c t s  can 

be included i n  a s t ra ight forward  manner by wr i t i ng  a second re la t iv i s t ic  

Vlasov equation describing ions and including i o n i c  cont r ibu t ions  i n  t h e  

P i  
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charge and cur ren t  dens i t i e s .  

hot tenuous state, thereby permitt ing us t o  neglec t  c o l l i s i o n a l  e f f e c t s .  

For most of t he  ana lys i s ,  t h i s  is  equivalent t o  assuming t h a t  w >> V , 

where v i s  the  c o l l i s i o n  frequency. However, f o r  t he  discussion of 

anomalous absorption, a s t ronger  condition is  needed. This w i l l  be 

discussed f u r t h e r  i n  Section 4 .  

Fina l ly ,  w e  assum the  plasma t o  be i n  a 

Let t ing  f ( x , z , ~ ,  t )  be  t h e  perturbed e l ec t ron  d i s t r i b u t i o n  

function, t he  l i nea r i zed  set of equations descr ib ing  the  system can be 

w r i t t e n  as follows: 

a B  
Z 

a E  aE 
X - - -  = -1-2 

az ax a t  

1 aEx 47r a B  
-2 = -- 

32 c a t  + c j x  

and 

Y 

Y 

Y 

Y 

where - le1 and m are t h e  charge and rest mass of an e l ec t ron ,  n 

is the  e l e c t r o n  number dens i ty  i n  t h e  unperturbed state,  

v is  the  e l ec t ron  ve loc i ty ,  and 

0 0 
- 
11 = yv where 

- 

The perturbed charge and cu r ren t  d e n s i t i e s  are given by: 
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and 
c 

In writing Equations (1) and (2), we made use of the symmetry of the 

interaction; i.e., Ey(x) = Bx(x) = BZ(x) = 0 everywhere. All 

quantities are independent of y variations. 

The equilibrium state F is assumed to be described by the 
0 

relativistic Maxwell-Boltzmann (JGttner) distribution; namely, 

m c  

KT 
0 where = - and K2(B) is the modified Bessel function of the 

second kind and of order "2". 

It is convenient in the following to first analyze the plasma 

half space x > 0 

of the slab. 

impose a specular reflection boundary condition on 

and then modify the basic approach to treat the case 

In order to completely specify the half space problem, we 

f (0,;) ; i.e., 

and require that 

2) Ex(x) and EZ(x) be bounded as x -t 03 

and 

3) Ex(x) and EZ(x) consist only of waves traveling in 

the +x direction. 

The latter two conditions are usually called the "radiation condition." 
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We look for solutions of the form exp i(kzz - ut) , where w and kZ 

are real positive quantities. 

negligibly small. 

limit of the considerably more difficult "mixed initial value-boundary 

value" problem. Taking the Laplace transform on the x variable, the 

transformed equations become: 

All temporal transient fields are assumed 

In effect, we are describing the asymptotic time 

i(k u + kzuz - wy)? = uxf(o) + = 0, x x  
0 

iw. - ikzEx + EZ(o) - ikxEz = - B 
C Y  

Y ( 4 )  

E + -  9 (5) 
iw 4.rr * 

- 
-ikB- = - -  

Z Y  c x c j x  

c EZ + c j z  9 ( 6 )  
iw -   IT - - - B. (0) + ik B = - - 

Y X Y  

where the Laplace transform variable is ikx with Im.kx < 0 . 
.-- Using Equation ( 4 )  to eliminate ' &  (kx) and Equations (2f) and - Y 

and jz , we jX (3) to eliminate the transformed current densities 

obtain : 

2 

k k  ++ 
w w  

x z  c 

aFo 3 u -  du 
z aux 

3 

C Y ( ~ Y  - k 4  

uxuz€ (o)du 
-- 9 

iw = ik E (0) - - x z  C B p  - 2 (7) 
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3 

Y = ikZEZ(o) + , -- 
C (yw - k-u) 

2 
4nn0 I e I 

where w : and i= k u + k u with kx complex. m x x  z z  
0 P 

,., 
It is now poss ib l e  t o  ob ta in  a lgeb ra i c  expressions f o r  Ex(kx) 

,., 
and Ez(kx) However, i t  i s  very d i f f i c u l t  t o  l o c a t e  the  zeros of the  

denominators of these  expressions and thereby obta in  t h e  pole  contribu- 

t i o n s  i n  t h e  inverse  Laplace transform in t eg ra t ions .  To overcome t h i s  

d i f f i c u l t y ,  w e  adopt an approach out l ined  i n  Ozizmir's work and introduce 

a new coordinate system. 

The set of complex base vectors:  8, , 8, , and 8, defined by 

8, f y^ 

and 

k 2 - kzG 

j/k: + kz2 

- X 8, = 8, x 8, = 
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defines a complex orthonormal basis. 

rotation'' about the y axis. 

new system and its components related to the original Cartesian system 

as follows: 

The transformation is a "complex 

A 3-vector can be described in this 

- 
A = A$?+Ag+AZi' = A 8  + A 8  + A 3 g 3  Y 1 1  2 2  Y X 

where 

kxAl - kZA3 
k A =  

X 

k A + k;Az - x x  
A1 - k 

A = A2 A2 = A 
Y Y 

- kzAl + kxA3 
AZ - k 

k A - kzAx 
k 

x z  - 
A3 - 

and 

It may be readily shown that 

and that 

$3 8, x 8, = 

1 8, x 8, = 8 

2 G 3  x 8, = 8 Y 

where is the Kronecker delta.' As in the case of all rotational 

transformations, lengths are preserved, i.e., A B = A' 5' . - -  - 
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Writing Equations (7) and (8) in this new coordinate system and 

making use of 

0 aFO 
1 au3 3 au, 

aF 
u - =  u -  

valid for any isotropic velocity distribution, it can be shown that 

and 

3 

-- 2 Y 

C Y(YW - k-u) 
= - ik E (0) - z z  

where the fact that the Jacobian of the transformation is +1 was also 

used 
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The attractiveness of this approach rests on the fact that 

which is proved in Appendix A .  

When Equation (11) is used in Equations (9) and (lo), we obtain 

(12) and 

where AL(kx) and AT(kx) are the longitudinal and transverse 

dispersion functions defined as: 

and 

3 u3 (aFo/au3)du 

(YW - kul) 
2 2  2 AT(kx) = (kx2 + kZ )c - w - ww 

P 



Solving Equations 

ing back to the original 

- 14 - 
(12) and (13) for E, and E, and transform- 

Cartesian coordinate system, we now obtain: 

and 

P" I 

where 

and 

GT(kx) = - i (kx2 + kZ 2 2  ) c  EZ(o) 
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and 

(k L+k ") ! (yw - kxux - kzUz> 
x z  

x z  

2.2 F ie ld  Components Ins ide  the  Plasma Half Space 

A s  functions of pos i t i on  x i n s i d e  t h e  plasma, t he  e l e c t r i c  

f i e l d  components may be w r i t t e n  as: 

i k  x 
X 

Ex(kx)e dk X Ex(x) = - 2lT 
J 
C 

and 

i k  x 

Ez(kx)e dk X 
EZ(x) = - 21T Y 

C 

where t h e  contour "C" l ies i n  t h e  kx plane p a r a l l e l  t o  t he  real  kx ax i s  

and below a l l  s i n g u l a r i t i e s  of Ex(kx) and iz (kx)  as shown i n  

Figure 2.  These expressions are deceptively simple "in appearance.'' 

Since E (k ) and E (k ) are l i n e a r l y  r e l a t e d  t o  GL(kx) and GT(kx) 

and these  q u a n t i t i e s ,  r e l a t e d  t o  

x x  z x  

B,(o) , EZ(o) , and an i n t e g r a l  over 

f(o,G) , our answers remain couched i n  t h e  form of i n t e g r a l  equations. 
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kx plane 

-a 
0 

Figure 2 .  Inverse Contour C i n  Complex k Plane 
X 
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We overcome this difficulty by making use of the specular reflection 

boundary condition on f (0,;) and imposing the "radiation condition" 

on all field quantities. 

imposes strict mathematical. conditions on GL(kx) and GT(kx) and 

enables us to obtain solutions without having to directly solve the set 

The application of these boundary conditions 

of integral equations. 

The longitudinal and transverse dispersion functions are 

analyzed in Appendix B. We show that A (k ) always has two roots, 

K and -K , whereas AL(kx) may have two or no roots. Longitudinal 

roots, when they exist, are designated by K and -'cL . In both 

T x  

T T 

L 

cases, the roots are either real or pure imaginary. Real roots are 

always on the open interval (-ao,ao) , where 

w 
C 
- COS e 

and 8 is the angle of incidence. Longitudinal roots exist only when 

which is seen to be independent of the angle of incidence. 

When 'cT is real, K is necessarily also real. When K~ is 

pure imaginary, K~ is necessarily also pure imaginary. When K~ is 

imaginary, K may be real or pure imaginary depending on 8 , f3 , 
and w /up2 

L 

L 
2 The exact conditions are given in Appendix B. Finally, 

we note that A (k ) and A (k ) are analytic everywhere except for a 

cut which lies along the part of the real k 

(See Figure 2) 

L x  T x  

axis given by lkxl > a0. X 
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We satisfy part of the radiation condition by requiring that 

G ~ ( - K ~ )  = 0 (24) 

and 

G ~ ( - K ~ )  = 0 

A second part of the radiation condition is satisfied by imposing the 

condition that: 

and 

where kl E Re{kx} > a. and 

+ 
j3 -(-k ) f lim 2 (-kl 5 is) 

E* 
X x 1  

+ The functions gz (-kl) and Ez-(-kl) are similarly defined. 

Equation (24) states that: 

Changing ux + -u 

obtain: 

and using the condition of specular reflection, we 
X 

- ( 3 0 )  
u )f(o)du ux(KLux + z z 

Y(YW - KLUX - kzUz) I ikzcB (0) - 41'rlel 
0 = - [  Y 
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Therefore , 

GL(+KL) = - 2ik cB (0) 
z - Y  

Similarly, Equation (25) implies that 

The "cut conditions" given by Equations (26) and (27) require 

that 

and 

GT GL 
% AT 

and - The last two equations state that the functions - 

are continuous across that portion of the cuts of hL(kx) and AT(kx) 

corresponding to -k < -a , where kl > 0 . This places stringent 1 0 

restrictions on the functions GL(kx) and GT(kx) To illustrate 

these restrictions, we consider the implications of Equation (33). By 

definition, 
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Let t ing  ux -t -u 

obtain: 

and using t h e  condition of specular r e f l e c t i o n ,  w e  
X 

3 
ux (klux + kzUz 1 f (0 1 du 

y[yw - (kl - iE)ux-k z z  u I I + 
GL (-kl) = - i k  c B  (0) + 41~1el l i m  

= Y  E N  

(36) 

Eliminating t h e  i n t e g r a l  t e r m  i n  Equation (36) by using the  d e f i n i t i o n  

of GL-(+kl) , w e  r ead i ly  f ind  t h a t  

GL + (-kl) + GL-(kl) = - 2ikZcBy(o) 

S imi la r ly ,  w e  obtain:  

+ GL (kl) + GL-(kl) = - 2ik  Z cBy(o) 

Using the  r e l a t i o n s  

(37) 

and 

which are shown i n  Appendix B and Equations (37) and ( 3 8 ) ,  i t  can now 

be  shown t h a t  

(41) 
where 

w IT k >CY, E   COS^ C ; 0 < 0 < -  - - 2  1- 0 
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I n  a completely analogous fashion, Equation (34) i m p l i e s  t h a t  

W e  may now obta in  E (x) and E (x) by deforming the  o r i g i n a l  
X z 

contour "C'8 as shown i n  Figure 3. The electric f i e l d  components 

Ex(x) and EZ(x) are each composed of a longi tudina l  and a t ransverse  

electric f i e l d .  

To obta in  the  "longitudinal" e l e c t r i c  f i e l d  cont r ibu t ion  t o  

Ex(x) and EZ(x) , w e  deform "C" as shown i n  Figure 3. We obta in  t h e  

corresponding ' 'transverse'' e l e c t r i c  f i e l d  cont r ibu t ions  t o  Ex(x) and 

E (x) by deforming "C" as shown i n  Figure 3 and s u b s t i t u t i n g  KT f o r  

For i l l u s t r a t i v e  purposes, the  longi tudina l  roo t  w a s  shown as pure K 

z 

L *  

imaginary. 

I n  t h e  l i m i t  as R -t a, , w e  obta in  from Equation (22): 

i K  x T 

2 -  

i K  x L 

+ kZ2)AL' (~L)  (lcT2 + kz)AT'-(~T) 

WK e T 1 + Ex(x) = 2kZcB- (0) 
Y 
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C 

Figure 3. Deformation of the Contour C After Application 
of the Radiation Condition and the Boundary 
Condition 
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where Equations (31), (32), (41), and (42) w e r e  used and 

1 

X 

AL (KL) E - dk 

and 

T dhT 
AT (ICT) f - 

X 
dk 

I k  = K  x T  

A s  shown i n  Figure 3, K = i l K L l  . L 
I n  obtaining Equation (43), w e  made use of t h e  f a c t  t h a t  

l i m  (kx ikz )  Ex(kx) = 0 

k +- + i k z  x -  

(44) 

(45) 

2 This r e s u l t ,  which i s  a l s o  mentioned by S i l i n  and Fetisov, 

be shown by making use of Equations (B-22) and (B-23) and i n  no way 

depends on the  assumed boundary condition on €(o,';> . 

can e a s i l y  

The z component of t he  electric f i e l d  can be obtained i n  a 

completely analogous fashion. The r e s u l t s  are: 

co 
2 ,  

a 

+ 2: 

0 
co 

1 - 
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where w e  made use of t h e  f a c t  t h a t  t h e  res idues  of 

k = 4- i k z  are a l s o  zero. 

% (kx) a t  
Z 

x -  

I n  order t o  obta in  Equations ( 4 3 )  and ( 4 6 ) ,  w e  t a c i t l y  assumed 

t h a t  G (k ) and GT(kx) are a n a l y t i c  everywhere except f o r  cu ts  on 

the  real a x i s  defined by 

L x  

lkxl > a. . These assumptions are j u s t i f i e d  

a p o s t e r i o r i .  

It is convenient i n  what follows t o  express our so lu t ions  f o r  

Ex(x) and E Z ( x )  i n  a more compact form. Equations ( 4 3 )  and ( 4 6 )  can 

be r ewr i t t en  as: 

X 
dk 

cL ikxx 
dk 

X 

Ex(x) = 2lTi 

2kZcwB (0) kxe 
+ 

2 r i  J (k:+k:)hT(kx) 

cT 

and 

i k  x 
X 

X 

X 

E Z W  = 2Ti 

cL ikxx 
2wcB (0) kx e dkx - 

2Tri ¶ 

( 4 7 )  

where CL i s  the  sum of t h e  contours shown i n  Figure 4 .  The CT 

“L a 
contour is  similar t o  t h a t  shown i n  Figure 4 with K~ 

By imposing the  r a d i a t i o n  condition and making use of specular 

replacing 

r e f l e c t i o n ,  w e  have completely eliminated t h e  d i f f i c u l t y  of having 

our r e s u l t s  expressed i n  terms of i n t e g r a l  equations. 
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k, plane A “L 

Figure 4 .  The C Contour - A Sum of a Pole and a Cut L 
Contribution 
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For illustrative purposes, KL was assumed to exist and shown 

as pure imaginary. Since 

(XI 
iw aEZ 
C z x  ax - By(x) = ik E (x) - - 9 

we obtain: 
ik x 
X 

By(X) = 27ri 
. 

(49) 

As expected, the magnetic field in the plasma does not depend on any 

longitudinal effects. 

To check the consistency of our results, we take kZ -+ 0 

(normal incidence) and obtain: 

and 

where AT(kx) is now independent of k and the cut integral is on the 

interval (w/cp) e In this special case, there exists no mechanism for 

exciting longitudinal oscillations. Only transverse fields exist in the 

z 

plasma medium. We note that Equation (52) corresponds to Equation (24) 

of Ozizmir for normal incidence if the variable changes 2 -+ y^ , fi -+ 2, 

and 9 -+ fi are introduced. 
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2.3 Determination of t he  Perturbed P a r t i c l e  D i s t r ibu t ion  

The perturbed par t ic le  d i s t r i b u t i o n  s a t i s f i e s  the  equation: 

lelnoY 
( 5 3 )  

a t  -iwyf + uX7i + i k  u f = 
z z  m 

X 

W e  can obta in  a formal so lu t ion  t o  t h e  above by looking f o r  a so lu t ion  

of t he  form: 

Inse r t ing  our so lu t ions  f o r  E (x) and E2(x) i n t o  Equation ( 5 3 )  and 

using t h i s  assumed form f o r  

NT(kx) . 

X 

f (x ,u )  , w e  r ead i ly  ob ta in  NL(kx) and 

The perturbed d i s t r i b u t i o n  func t ion  may be wr i t t en  as: 

aF 

( 5 5 )  

The function f(x,u,k2,w) 

t o  Equation ( 5 3 )  with Ex(x) and E2(x) given by Equations ( 4 7 )  and 

( 4 8 ) .  

as expressed i n  Equation ( 5 5 ) ,  is  a so lu t ion  
1 

I n  Appendix C y  w e  prove t h a t  i t  s a t i s f i e s  t h e  condition of 

specular r e f l e c t i o n .  
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2.4 Uniqueness of the Solution 

In order to determine whether or not our solution f(x u,kZu) 
Y - 

is unique, we investigate the homogeneous solution h(x,u,kZyu) to 

Equation ( 5 3 )  ; i.e. , 

ah -i(wy - k u )h + u x x  = 0 
2 2  9 

whose solution may be added to Equation ( 5 5 ) .  

Equation ( 5 6 )  is: 

The solution to 

- i(wy-kZu,)x/u X 
h(x,u,kZyu) = A(;;>e Y ( 5 7 )  

- 
where A(;) is that set of u functions which makes h(x,G) satisfy 

the condition of specular reflection. The first condition on A(;) 

therefore is: 

iaeey A(:) must be an even function of u . Since 
X 

we see that Equation ( 5 7 )  corresponds to a wave traveling from infinity 

to the interface when u < 0 . Imposing the radiation conditions on 
the homogeneous solution requires that 

X 

A(u ,u ,uz) = 0 ; u < 0 . X Y  X 

From Equations ( 5 8 )  and ( 6 0 ) ,  we obtain: 

h(x,u,kz,w) = 0 



- 29 - 

2.5 Determination of GL(kx) and GT(kx) and Proof of 

Self-Consistency 

In order to obtain expressions for Ex(x) and EZ(x) , 
Equations ( 4 7 )  and ( 4 8 ) ,  we assumed that GL(kx) and GT(kx) were 

analytic everywhere except for cuts along the real k 

by 

expressed in Equations ( 2 4 ) ,  ( 2 5 ) ,  ( 2 6 )  and ( 2 7 )  which in turn implied 

axis defined 
X 

lkxl > a. . The radiation conditions then imposed the restrictions 

Equations ( 3 1 ) ,  ( 3 2 ) ,  ( 3 3 ) ,  ( 3 4 ) ,  ( 4 1 ) ,  and ( 4 2 ) .  We now show that 

GL(kx) and GT(kx) evaluated from f(o,u) do indeed satisfy all of 

these requirements. 

We begin by evaluating GL(kx) . Inserting f(o,L) , 
Equation ( 5 5 ) ,  into the integral definition of 

and using the fact that 

GL(kx) , Equation (181, 

where k ' # k , we obtain: 
X x 
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Gl(kx) = - ikzcB (0) Y 

- {kx'Axx(kx')+k A (k')) 1 l 2  + k Z 2){AL(kx') - w) 
2 r  z xz x 

up (k, - kx) 

dk ' 2 
X 

w B (o)kZc 
IT l(kx I 2  + k z 2)A L (k x ') 

+ P Y  

cL 

+{kA (k)+kA (k)) 1 + k Z 2){AL(kx) - w) 

2 '  x xx x z xz x 
up 'kx - kx) 

k 'dk ' 2 

x x  {k A (k ') - k 'A (k ' )) 
w B (o)uc 

+ p y  IT z xx x x xz x 

k 'dk ' x x  w 2B (o)wc 
- {kxAxZ(kx) + kZAzz(kx) 

Tr I n (kx l 2  + k x 2)AT(kx') 

where we made use of the definitions of A (k ) and A (k ) , L x  T x  
Equations (20) and (21), and that of Aij(kx) , Equation ( A - 4 ) .  
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Expressing A (k ) and AT(kx) in terms of the A..(k ) functions 
L x  1J X 

and using Equation (A-3), where 

solve for A A and AZz . We obtain: 
R(kx) = 0 , we can simultaneously 

xx ' xz 

and 

Using Equations (63) - (65) and the definition of B ( o ) ,  Equation ( 5 0 ) ,  

in Equation (62), we obtain: 
Y 

+ k 2)[AL(kx) - A (k ')]dk X ' 
2 .L x 

I2 + kz2)AL(kx')(k X ' - kx) IT 

kgcB (0) k 'dk ' J x x  (kxq2 + k22) 
- 

IT 
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The function GT(kx) is obtained in an analogous mavner. We 

find: 

dk ' 
X 

(kXf2 + kZ2) 
- 

IT 

It is straightforward to show that GL(kx) and GT(kx) given 

by Equations (65) and (67) satisfy all requirements imposed upon them. 

2.6 Reflection and Transmission Coefficients 

The incident wave's electric ang magnetic fields are given by: 

and 

i iw/c(x cos8 + z sine - ct) cos0) e i .  2 = g ( ~ ~ ~  sine - 9 

where, from Gauss' law, 
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The reflected wave's electric and magnetic fields are given by: 

( 7 1 )  
-r iw/c(-x cos8 + z sine - ct) E = (Er %.'+ .EEzz")e ox 

and 

-r B = ~ ( E E ~  sine + ~ ' 0 ~  cos0)e 9 

( 7 2 )  

iw/c(-x cos0 + z sine - ct) 

where -Er ox cos0 + EEz sine = 0 ( 7 3 )  

Applying the boundary conditions on Maxwell's equations and 

using the condition of specular reflection, we obtain: 

( 7 6 )  sinO(Ekx + Er ) - cosO(EoZ i - E ') B: (0) Y ox O Z  

r : 
Equations ( 7 4 ) ,  (751,  and ( 7 6 )  may be solved for Eoz 

B (0) by making use of Equations ( 7 0 )  and ( 7 3 )  to eliminate Y 
Er 

and 
i and Eox 

and using the fact that ox 

Ex(o) = B (0) sin0 Y ( 7 7 )  Y 

which results from evaluating: 

iw 4Tr 
-ik Z Y  B. (x) = - - C E x W  + e jx(x) 

at x = 0 . We find 
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i (case + H) E' s 
02 - Eoz (cos9 - H) 

and 

where we defined 

(79) 

The integral representation of this new parameter can easily be 

obtained from Equation (48). 

The reflection and transmission coefficients are defined as: 

and 

- 
where S is the time averaged Poynting vector defined by: 

and 

Using Equations (68) through (73), we find: 
i . 2  c IE.. I i . 02 

m case <sx ( o ) >  = 



Consequently, 
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The f r a c t i o n  of the t o t a l  energy which t r a v e l s  across  the  i n t e r f a c e  is  

given by : 

Since ReH < 0 w e  may e a s i l y  show t h a t  

R(o)  + T(o) = 1 (89) 

as expected. 

The f r a c t i o n  of energy which t r a v e l s  deep i n t o  the  plasma medium 

is given by: 

T(") E l i m  T(x) 9 

X- 

where 

It i s  clear from Equations ( 4 8 ) ,  (50) and (90) t h a t  T(") i s  non zero 

only when 

depending on whether a longi tudina l  root  a l so  e x i s t s .  

and K = IKLI w e  obtain:  

K~ = I K , I  . There e x i s t s  two poss ib le  cases t o  consider 

When KT = IK,] 

L 
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and therefore ,  

l i m  T(x) = 
X* 

The f i r s t  t e r m  represents  the  i n t e r a c t i o n  of the longi tudina l  and 

t ransverse  waves--a second order e f f e c t .  The e l ec t rons ,  whose dens i ty  

varies harmonically i n  x i n  t h i s  asymptotic l i m i t ,  i n t e r a c t  with the  

t ransverse  electric f i e l d ,  thus giving rise t o  an x dependent energy 

density.  Such a s i t u a t i o n  arises only when both AL(kx) and AT(kx> 

+ have roo t s  on t h e  real k a x i s ;  i.e., when AT (0) 0 and 

\+(ao) < 0 . Evaluating Equations (B-42) and (B-47) i n  t h e  l i m i t ,  

f3 100 , we f i n d  as conditions t h a t  

X 

n L 
1 w 

l - + ( l + $ < o  
w 
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and 

2 w < -  (1 - 3/28 - 1 
2 

P 
cos 2 e 8 - w  

Combining these two inequalities, the existence condition for real 

longitudinal and transverse roots becomes: 

2 (1 - 3/28)  
(1 + 3/28) 

cos e > 

We conclude that real longitudinal and transverse roots exist only for 

near normal incidence. Since T(m) obtained above still contains a 

term harmonically varying in x , we conclude that a transmission 

coefficient cannot be properly defined in this case. 

When the longitudinal mode does not exist, we obtain: 

We note that H ( 8 )  is finite as 0 + 7r/2 and consequently, as expected, 

lim T(==,e) + 0 
e + Tr/2 

Comparing Equation (88) to Equations (92) and ( 9 3 ) ,  it is clear 

that some of the incident energy is absorbed by plasma. It is inter- 

esting that the energy absorbed by the particles is removed to infinity 

in the form of a heat flow. This is expected since otherwise strictly 

stationary solutions (w real) could not have existed. A model describing 

an energy exchange mechanism is presented in Section 4 .  
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2.7 Second Order Effects - Heating 
To investigate the elementary non-equilibrium thermodynamics of 

this problem, we follow a procedure outlined by Ozizmir and define two 

new quantities: 

u E Re I (mc2y) (noFo + fl + f 2)du 3 

= uo + u1 + u2 

and 
, 

2 3 
(mc y)(n F + fl + f2)du 

0 0  

- 
= Ql+T2 Y ( 9 5 )  

- 
where U is the internal energy, Q the'kotal energy" current density 

(heat and rest mass), and fl and f2 are the first and second order 

perturbed distribution functions for electrons. 

The internal energy of the equilibrium state is given by: 

2 Multiplying Eqqation (I) by mdc 
- 

integration over u space, we find: 

au, at + vr.ql = o  7 

( 9 6 )  

and taking the real part of an 

(97)  
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U1 and vary harmonically, it is clear that their time 1 Since 

average values vanish. 

To obtain an expression describing the heating of the plasma, 

we investigate the second order Vlasov equation: 

Rezl 0 Revufl + noE2 VuFo 
- m 0 - 1  af2 - c + u Vrf2 - Y a t  

- 
+ m c  lel Re(; x 1 ) VuRefl 

0 

- 2 Multiplying Equation ( 9 8 )  by mic and integrating over all u space, 

we obtain: 

3 - - = 1e1c2 y(ReE1 Reiufl)du +vr* Q, 
at ( 9 9 )  

Taking the time average of Equation ( 9 9 )  and using the fact that: 

- *  
Re(yl Vufl ) 

<Rezl * Rev f > = 9 

2 
u l  

we find: 
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The time averaged Joule heating term may be expressed as a divergence of 

the Poynting vector by eliminating j through Maxwell's equations. 

Equation (101) may then be rewritten as: 

* 
1 

Following Ozizmir, we note that f2(x G) , as defined in Equation (98), 

contains 0 ,  2w , and -2w frequency components from which we conclude 
Y 

that the bulk heating term in Equation (102) must be zero; %.e., 

(?} = 0 

Making use of Equation (103) in Equation (102) and noting from the 

symmetry of the interaction that 

of z , we find: 

> and <QZ2> must be independent -22 

[ <Qx> + Re<Sx> ] = o  ax 

Therefore, 

Re<Sx(o)> = <Q X (x)> + Re<Sx(x)> 

and consequently: 

The fact that the "total energy flow" attains an asymptotic value 

indicates that the conversion of energy from electromagnetic to a total 

energy density flow is a surface phenomenon (the skin effect). 
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Dividing both sides of Equation (106) by Re<Sxi(o)> , we 
obtain an expression for the absorption coefficient A , defined as: 

Equation (107) is a statement of the energy conservation. 
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3.  THE SLAB PLASMA 

3 . 1  Modification of Half Space Analysis for Plasma Slab 

We now consider a slab plasma whose faces are perpendicular to 

the x^ axis and situated at x = 0 and x = a . To avoid repetition, 

we begin here by indicating the modification necessary f o r  adapting some 

of the results of the previous analysis to the present case. 

functions Ex(x) , EZ(x) and EY(x) are defined to be identical to 

the functions Ex(x) , EZ(x) and B (x) within the plasma layer and 

vanish identically elsewhere. 

The 

Y 
It is then clear that the Laplace trans- 

form of Ex(x) and E Z ( x )  are again given by the expressions in 

Equations (16) and (17) provided we replace all quantities evaluated at 

x = 0 , i.e., f(o) , Ex(n) , E (0) and B (0) by f (o) - e 
-ik a 

f(a) , X 

Z Y -ik a 
Ex(a) , etc. Making such a substitution, Equations (16) X 

Ex(o) - e 
and (17) become: 

and 

where 
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and 

and the  superscr ip ts  " s " ,  "o " ,  and "a", respec t ive ly ,  denote a s l ab  

quant i ty ,  a quant i ty  evaluated a t  x = 0 , and a quant i ty  evaluated a t  

x = a . The funct ions G '(k ) and G O ( k  ) are defined as i n  L x  T x  

Equations (18) and (19). The new functions GLa(k ) and GTa(kx) are 

defined as: 

X 

3 1  

ux(k u + kzuz)f (a)du x x  
- -  I y(yw - k 4 

a 
X 

and 

GT a (kx) E - i(k: + kZ 2 2  ) c  EZ(a) 

Ux(kxUz - kZux) f (a) du 
- -  I y(yw - k u) 

+ w [ikXcBy(a) + 4.rrlel 

- -  
where k u = k u + kzuz . x x  

Since E (x) and EZ(x) are bounded funct ions of x , it  
X 

follows t h a t  Ex(kx) and Ez(k ) are e n t i r e  funct ions of k . To 

make t h i s  point  clear, w e  consider: 

X X 

- ik x 
dx ' 

2 '(k,) E Ex(x)e X 

X i 
0 
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IEx(x)l < M , and 0 L x  - < a < CQ , i t  is  clear t h a t  

a l l  of i ts  de r iva t ives  e x i s t  f o r  ]kxl < CQ ; i.e., t: i s  

an  entire function. The above conclusion depends on Ex(x) being 

bounded and a < 03 . I n  t h e  case of t he  ha l f  space, t h e  second 

condition does not hold. 

i n f i n i t y  f o r  a l l  k values with Imkx > 0 

The func t iqn  and i ts  de r iva t ives  go t o  

X 

S Since E '(k ) and Ex (kx) are e n t i r e  functions,  w e  must x x  

conclude t h a t  : 

and 

and t h a t  E '(k ) and E '(k ) are continuous across t h e  e n t i r e  real 

ax is .  The la t ter  conditions imply t h a t :  

x x  z x  

and 

are va-lid f o r  a l l  kl f R e  kx 
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3 . 2  Inverse Transforms 

As i n  t he  case of t he  ha l f  space, t he  electric f i e l d  components 

i n s ide  the  plasma s l a b  are given by the  inverse Laplace transforms: 

c 
and 

C 

where C is  an open contour p a r a l l e l  t o  the  rea k ax is .  Since 
X 

they do not  as y e t  contain the  information of specular  r e f l e c t i o n ,  

Equations (118) and (119) are not  i n  themselves the  two components of 

t he  physical ly  meaningful e lec t r ic  f i e l d  i n  the  plasma. 

Before evaluat ing the  electric f i e l d  components wi th in  the  

plasma, w e  wish t o  show t h a t  Equations (118) and (119) imply t h a t  

Ex(x) and EZ(x) are i d e n t i c a l l y  zero outs ide  the  s lab .  With t h i s  

goal  i n  mind, w e  consider E (x) f o r  x values  i n  the  two in t e rva l s :  

x < 0 and x > a e When x < 0 , w e  deform t h e  o r i g i n a l  l i n e  contour 

as shown i n  Figure 5 and f i n d  as R -f : 

X 

i k  x Exs(kx)e X dk = 0 
X 

From the  de f in i t i ons  of GL 0 (kx) , GL a (kx) , GTo(kx) and GT a (kx) 

i t  i s  clear t h a t  the  I' contributLon goes t o  zero. Thus, w e  have: 1 



C 

Figure 5. Deformation of Contour C When x < 0 
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When x > a , w e  deform c as shown i n  Figure 6 and obtain as R + a  : 

i k  x 
(kx)e dk X = 0 

r 2  
0 a 0 a 

From the  de f in i t i ons  of GL (kx) , GL (kx) , GT (kx) and GT (ax) , 
it  i s  again c l e a r  t h a t  the  r2 contr ibut ion goes t o  zero and, thus,  we 

obtain:  

Ex(x) = 0 ; x > a 

Similar ly ,  w e  can show tha t :  

and 

The f a c t  t h a t  B (x) is  zero  when x < 0 and when x > a follows 

immediately from Equations (121) through (125). 
Y 

3.3 E l e c t r i c  Fields  Within the  Slab 

When 0 < x < a , the  x component of t he  e l e c t r i c  f i e l d  may be  

wr i t t en  as: 

X 
X 

e dk 

GL 0 (kx) 0 

1 
Ex(x) e 1 (k + kZ 2 ) [ kx k ( k x )  

C - 
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I 

Figure 6. Deformation of Contour C When x > a 
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Since (x - a )  < 0 , w e  may c lose  the  second contour as shown i n  

Figure 7 and obtain:  

where c is an open contour parallel  t o  t h e  real k ax i s  and below 

a l l  s i n g u l a r i t i e s  of t h e  integrand; i .e. ,  t he  zeros of t h e  A (k ) and 

A (k ) functions.  Choosing C t o  l i e  below a l l  t he  s i n g u l a r i t i e s  of 

t h i s  integrand permitted us t o  c lose  the  second contour i n  Equation (126) 

X 

L x  

T x  

and obta in  no contribution. 

S imi la r ly ,  when 0 < x < a , Equation (119) may be w r i t t e n  as: 

0 0 
GT (kx) i k  x 

e x d k  . 
X J 1 GL (kx) 

E ~ ( x )  = %? 1 (kx 2 + kZ 2 1 c.. AL(kx) 

G 

It is clear t h a t  t he  integrands of t h e  i n t e g r a l s  appearing i n  

Equations (127) and (128) are no longer e n t i r e  functions.  These last  

two equations can be solved by imposing the  conditions expressed i n  

Equations (114) through (117) and using the  condition of specular 

r e f l e c t i o n  a t  t he  two in t e r f aces .  Since t h e  a lgebra ic  manipulations 

are b a s i c a l l y  i d e n t i c a l  t o  those given f o r  t h e  h a l f  space problem, w e  

w i l l  simply o u t l i n e  the  der iva t ion .  

The two r e l a t i o n s  given i n  Equation (114) imply: 

- i K  a i K  a L o  e GLo(-KL) + e GL (KL) = - 2ikZcB (a) 
Y 
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Applying specular r e f l e c t i o n  t o  G L o ( - ~  ) 

GLo(+KL) , we f ind:  

and using t h e  d e f i n i t i o n  of L 

0 0 GL (ICL) + GL ( - K ~ )  = - 2ikzcB (0) 
Y 

We ob ta in  from t h e  last  two equations: 

- i K  a L G '(K ) s i n  K L a  = kZc[By(o)e - By(a) 1 L L  

and 

where w e  n o t i c e  t h a t  Equation (132) can be obtained from Equation (131) 

by l e t t i n g  K + - IC L -  L 

The conditions on the  c u t  may be  obtained i n  a similar fashion. 

Applying the  condition of specular r e f l e c t i o n  a t  x = O  , w e  r ead i ly  

obtain:  

O+ GL (kl) + G L o  (-kl) = - 2ikZcB (0) 
Y 

and 

(134) GL +O (-kl) + GL -0 (kl) = - 2ikZcB (0) 
Y 

Making use of Equation (116) and applying the  condition of 
\ 

specular r e f l e c t i o n  a t  x = a , w e  f ind :  



- 51 - 

where w e  a l s o  used Equations (39) and ( 4 0 ) .  The cu t  conditions on the  

function G, (kx) are obtained from Equations (133), (134) and (135). 

W e  have : 

0 

where kl > 0 . 
kl -+ - kl 

To ob ta in  the  cu t  condition when kl < 0 . w e  l e t  

i n  the  above expression. 

S Up t o  t h i s  po in t ,  we  have s a t i s f i e d  a l l  requirements on GL (kx) 
S imposed by the  "entire" na tu re  of t he  transformed functions 

and zz (kx) . 
Ex (kx) 

S Imposing these  requirements on GTS(kx) involves the  

same tedious procedure out l ined  above. To avoid r e p e t i t i o n ,  a l l  d e t a i l s  

w i l l  be omitted. Equations (115). (117) and the  condition of specular 

r e f l e c t i o n  a t  x = 0 and x = a imply: 



- 52 - 

- i K  a 
G T T  (K ) s i n  K T a  = - wTc[By(o)e - B , ( ~ ) I  Y (137) 0 

i K  a T 
(138) G 0 (-K ) s i n  K T a  = - ~ K ~ c [ B  (o)e  - By(a>l 

T T  Y 

and 

where kl > 0 . To ob ta in  t h e  cu t  condition when kl < 0 , w e  let  

kl -t - kl i n  t h e  above. 

There now arises a c e r t a i n  ambiguity i n  obtaining t h e  q u a n t i t i e s  

-0 +o -0 

- 
and [F--] GT GT 

T 'T 

s i n c e  t h i s  involves d iv id ing  both sides of Equations (136) and (139) by 

s i n  k a , which is not permissible when 

n = i n t ege r .  

w 

- - -  case ; n?T 
lkll = 1 ~ 1  > a. 1 C 

To overcome t h i s  d i f f i c u l t y ,  w e  follow Landau and consider 

as a complex number with a s m a l l  p o s i t i v e  imaginary p a r t  which i s  l e t  

go t o  zero a f t e r  t he  so lu t ion  is  obtained completely, The s t a t iona ry  

so lu t ions  thus obtained are in t e rp re t ed  as being t h e  asymptotic t i m e  

l i m i t s  ( so lu t ions)  of t he  mixed i n i t i a l  value-boundary va lue  problem. 

It is i n t e r e s t i n g  t o  note t h a t  t he  above ambiguity a l s o  arises when 

Laplace transform techniques are applied t o  the  f l u i d  model desc r ip t ion  
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of the same problem. 

in the present analysis is thbt it completely removes the above 

mentioned ambiguity. When w has a small positive imaginary part, 

The significance of this procedure (w + complex) 

the singularities of 

shifted as shown in Figure 7. The singularities of [AT(kx)] and 

the cuts of the CTr 

replacing K 

CT' , Equations (127) and (128) become: 

[A,(kx)]-l and the of the CL contour are 
-1 

T contour are shifted as shown in Figure 7 with K 

Expressed in terms of the sum of contours, CL1 and L '  

-ik a ik x 

2Tr (k + kz2)sin kxahL(kx) 

X kx[B (o>e - B (a>le 
X Ex(x) = kZC I dk 

CL1 
-ik a ik x 

X X 
~ kzcw 1 kx[By(0)e - €3 (die 

x dk 2 
2Tr + kZ )sin kxa%(kx) 

("X 
cT 

and 

-ik a ik x - B (a)]e X 

X 
EZ(x) = - dk 

(k + k ')sin kxaAL(kx) Z 

-ik a ik x 
X - B (a>le 

dkx Y (141) 
kxaAT(kx) 

where sin kxa # 0 on CL' and 5' . In obtaining Equation (140) 

from Equation (127) and Equation (141) from Equation (128), we took 

account of the fact that respective integrands have zero residues at 

the poles, k = + ikz . x -  
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k plane 
X 

Figure 7. C' Contour - Path of Integration When w Has a L 
Slight Positive Imaginary Part 



- 55 - 

Using the above equations, we find: 

-ik a ik x 
X - B (die kx[By(0)e X 

(142) x '  dk By(x) = c2 2Tr I sin kxaAT(kx) 

cT ' 
where, as expected, B (x) is independent of all longitudinal effects. 

Y 

3.4 Determination of the Perturbed Particle Distribution 

Inserting Equations (140) and (141) into the linearized Vlasov 

equation and proceeding as in the case of the half space, we find: 

f (x,c,kz ,w) = 

ilelnoY 
m 
0 

# -  By(a) e 

- k u) X 
dk 

I ikxx -ik a 
X 

- -  

- By(a) e 

dkx Y 

I ikxx -ik a 
0 X 

aF 

i I e I noY X (E) - -  - 
m ' + k ')sin kxaAT(kx) (wy - k u) 

2 
0 

(143) 

- -  
where k u = k u + kzuz . In a straightforward but tedious fashion, x x  

we can show that: 

and 

The proof follows the same lines as'that given for the half space 

problem. 
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3.5 Uniqueness 

The solution to the homogeneous linearized Vlasov equation, 

Equation ( 5 6 ) ,  in the case of the slab plasma is given by: 

i(wy - kZu,>x/ux 
hS(x,<,kZym) = A(G)e 

where w E w + iv ; v > 0 . Imposing the condition of specular 

reflection on this solution at x = a , we find: 
0 

i ( w y  - kZu,>a/ux -i(wy - kzuz)a/ux 
A(ux, ..-)e = A(-ux, ...) e 

(147) 

For Equation (140) to hold for all values, it is seen that: 

and, therefore, 

hs(x,vykz,w) = 0 . (149)  

0 a 0 3.6 Determination of GL (k ) , GL (kx) , GT (kx) and GTa(kx) and x 
Proof of Self-Consistency 

The self-consistency proof for the plasma slab problem follows the 

same lines as that given for the case of the plasma half space. Defining 

we can show, after some lengthy algebraic manipulations, that: 
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+ kZ2) [AT(kx') - AT(kx)]H(kx')dkx' 
k Z 2)AT(kx')(kx' - kx) 2Tr 

0 
GT (kx) = - 

ikz 2 cAT(kx) 

2Tr 
- 

21T 

ikx'a 
H(k ')dk ' 

a k x '(k x x z  'k +k 2)[$(k X '1 - AT(kx)]e _ _  X X GT (kx) - 2Tr 
(kX I 2  + k Z 2)%(kx')(kx' - kx) 

CrP ' I 

ikx ' a 

2Tr 
- 

')dk ' - ikz2dT(kx) X X ' 
2Tr 

X 
2Tr 

ikzcdL(kx) 
X 

X 

- 
2Tr 

1151) 

and 



- 58 - 

ik 'a 
H(k ')dk ' 

ikx' a 
H(k ')dk ' ikz cwA, (k,) kx ' e X X I - 

2n 

c;. 
(153) 

We used the quantities EZ(o) , Ez(a) , B (0) and B (a) Y Y 
evaluated from Equations (141) and (142) in deriving Equations (150) 

to (153). It is clear that Equations (114) through (117) follow from 

Equations (150) through (153). 

3.7 Reflection and Transmission Coefficients--Slab Plasma 

As in the case of the half space, the incident and reflected 

waves' electric and magnetic field vectors are given by Equations ( 6 8 ) ,  

(691, (71) and (72). The transmitted wave's electric and magnetic field 

vectors are given by: 

w i-(x cos0 + z sine - ct) 2 (E:~ jt + t . A  z)e c (154) 

and 
w i;(x cos9 + z sine - ct) 

B = f<~:~ sine - cose) e . (155) -t 
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Applying the boundary conditions on Maxwell's equations and the 

condition of specular reflection at x = 0 and x = a , we obtain: 

Equations (741, (75) and (76) and 

wa i- cos0 c <  Ex(a) = Et e ox Y 

and 

wa 
t t C 

i--cos0 
By(a) = (Eox sin0 - Eoz cos0)e 

In order to obtain the reflection and transmission coefficients, 

it is useful to first express Ex(o) , Ex(a) , EZ(o) , and EZ(a) in 

terms of B (0) , B (a) and the plasma characteristics w 2/u2 and 6 .  

Evaluating Equation (78) at x = 0 and x = a , we find: 
Y Y P 

Ex(o) = B (0) sin0 (159) Y 

and 

Ex(a) = B (a) sin0 (160) Y 

Similarly, evaluating Equation (141) at x = 0 and x = a , we obtain: 

Ex(o> = 1-I By(o) + v By(a) (161) 

and 
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R(o) = 

The integral definitions of 1.1 and v are easily obtained from 

Equation (141). Making use of Equations (159) through (162) and of 

Gauss's law to eliminate 

simultaneously solve Equations (74) through (76) and Equations (156) 

through (158). We obtain, after some algebraic manipulations: 

E' , and E:x , we may i 
Eox ' ox 

E 
0 2  -. 

Ei oz 

(v2 - 1.1 2 + cos2e)E:z - E' - 
2 2 0 2  

(v2 - l.l + 21.1 case - COS e) 

and 

We are now in a position to calculate the power reflection and 

These coefficients are given by: transmission coefficients. 

and 

v 2 - p2 + cos 2 e 
Y2 - 1.1 2 + 21.1 case - cos 2 e 

2 
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The above expressions for R(o)  and T(a) correspond to those 

given by Ozizmir in the limit as 9 + 0 (normal incidence). 
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4 .  Applications 

Up to this point, we have dealt with the most general aspects of 

the theory describing the interaction of an obliquely incident 

p-polarized plane electromagnetic wave with a semi-infinite and a slab 

plasma. Our results are given as complicated mathematical expressions 

which often tend to obscure the underlying physical phenomena. In 

this section, we make use of the large 8 limit of AT(kx) and 

given in Appendix E to examine three problems in greater detail. 
2 

> 100 . Physically, this corresponds mc large B , we mean B E - RT - - 
temperature range of The upper limit is roughly 

the core temperature of a white dwarf star. We a lso  note that terms of 

order 

devices which should operate at approximately 3.5 X 1080K. 

0 5 T 5 5.9 E 10’OK . 

6-l are expected to be of importance in controlled thermonuclear 

The first problem is the determination of a critical angle of 

incidence 0 such that for 8 < 0 , transmission will not occur. 

This problem is discussed in Section 4.1.  In Sections 4.2 through 4 .5 ,  

we investigate the penetration of a wave with a frequency into 

the plasma. For such frequencies, the electromagnetic fields penetrate 

into the medium, but there is no transmission. In Section 4.2,  general 

expressions are obtained for quantities which characterize the 

transverse and longitudinal depths of penetration. 

contain two parts, viz., the pole* conFribution associated with the 

roots of A (k ) and A (k ) , and, secondly, a cut contribution. 

c y  C 

w < w 
P 

These expressions 

T x  L x  
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The roo t s  are obtained i n  Sect ion 4.3. Expl i c i t  expressions f o r  t he  

depths of pene t ra t ion  are found i n  Sections 4.4 and 4.5 f o r  two l imi t ing  

cases. 

absorption. 

I n  Sect ion 4 . 6 ,  w e  present  a model f o r  non-col l is ional  

Sect ion 4.7 i s  devoted t o  a fu r the r  development of t he  

pene t ra t ion  through a plasma s l ab .  The f i e l d s  i n  the  plasma are 

obtained i n  a Fourier  series representa t ion  and t h e  e f f e c t  of 

geometrical  resonances is  discussed. 

4 .1  Cr i t i ca l  Angle of Incidence - Zero Transmission 

I n  discussing the  i n t e r a c t i o n  of an obl iquely inc ident  plane 

electromagnetic wave with a plasma medium, the  quest ion of a c r i t i ca l  

angle  of incidence 8 n a t u r a l l y  arises. W e  may obta in  an  a n a l y t i c  
C 

expression f o r  

transmission . 
T(a) = 0 when 

9 by studying t h e  condi t ion t h a t  gives  rise t o  zero 
C 

It i s  clear from Equations ( 4 8 ) ,  ( 5 0 ) ,  and (90) t h a t  

K i s  an  imaginary root .  Making use of Equation (B-47)  T 

and (E-2), w e  r ead i ly  f i n d  t h a t  K is  pure imaginary when T 
2 3 

w ( 1  -28) 

(1 + 5) 
2 cos2e < 

w 2 - 
w 

2 Bw 
1 w 

The above condi t ion i s  s a t i s f i e d  f o r  a l l  0 when 

i.e., w > w . W e  can a l s o  obta in  zero tranmission when w < w i f  
P P 

( 1  - 2 B) > 1 ; 
w 
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L 

sin0 > - 
u2 (1 + 0 */BO2) 

P 

The critical angle is given by the equality. 

We should indicate that zero transmission does not imply total 

reflection. The reflection is never total (except at T = 0 ) due to 

the surface absorption. Finally, we note that the above conditions also 

apply to the interaction of an obliquely incident s-polarized wave with 

a plasma half space as can be shown by approximating the integral in 

Ozizmir's Equation (A.19). 

4.2 Depth of Penetration 

In dealing with the interaction of an electromagnetic wave with 

a conducting medium, it is convenient to define a macroscopic length 

whose magnitude is a measure of the ability to penetrate the medium. 

The classical skin depth of a metal is a good example of such a length. 

In the case of normal incidence of a plane electromagnetic wave on a 

hot tenuous plasma half space, Silin' defines a complex depth of 

penetration A as: 
P 

The above definition has intuitive appeal when B (x) is an exponenti- 

ally decaying function of x . 
is a harmonically varying function of x . 

Y 
The integral is undefined when By(x) 
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A d i f f i c u l t y  with S i l i n ' s  d e f i n i t i o n  i s  t h a t  i t  i s  complex and 

w e  would p re fe r  t o  charac te r ize  t h e  depth of pene t ra t ion  by a real 

quant i ty .  

expression. 

normal incidence, he def ines  

One p o s s i b i l i t y  would be to  take the  real p a r t  of S i l i n ' s  

A d i f f e r e n t  approach w a s  used by Weibel. For t h e  case of 

2 J& ln(EE*)] 
x=o 

which i s  equivalent t o  wr i t ing :  

= + R e [ k ]  

Equation (171) states t h a t  Weibel's depth of pene t ra t ion  and 

t h a t  given by S i l i n  f o r  normal incidence are r e l a t e d  by: 

F ina l ly ,  w e  should mention t h a t  o the r  d e f i n i t i o n s  of a pene t ra t ion  depth 

are poss ib le .  We could, f o r  example, def ine  an energy depth of 

pene t ra t ion  as:00 

xT (x) dx 

; w < w  
9 

f 
I T(x)dx 

- 0  <x> = 
00 9 

0 

(173) 
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where T(x) is the normalized transmitted energy density whose limit 

as x -t ~0 is the transmission coefficient. The number of possible 

definitions for the penetration depth is indeed unlimited. 

The above definition for h , Equation (169), is adequate only 
P 

when pure transverse waves exist in the plasma medium. 

definition for the case where both longitudinal and transverse waves 

exist in the plasma. 

consequence based on the plasma impedance. 

reflection and transmission coefficients, we introduced a dimensionless 

quantity H defined as H EZ(o)/B (0) e The surface impedance is 

given by : 

We seek a new 

Our choice is not arbitrary, but is a natural 

In the discussion on the 

Y 

z E - -  4.rr H 
P C 

Evaluating Equation (48) at x = 0 , we note that H is a function of 

w 2/w2 , 6 , and 8 , the angle of incidence. The function H may be 

rewritten in a more instructive form. Evaluating Equation (2-b) at 

x = 0 and eliminating E (0) through the use of Equation (771, we find: 

P 

X 

ic 
w 2 By(0) = -- 

cos e 

Using this result, we write: 

(175) 

We are now in a position to defioe a complex depth of penetration as: 
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2 This definition is identical to that given by Silin and Fetisov in 

their investigation of the p-polarized interaction. It also reduces 

to the definition of Equation (169) for the case of normal incidence. 

Following Silin and Fetisov, we note that X is made up in 
P 

additive fashion of 5 and \ the transverse and longitudinal 

depths of penetration, From Equation (48), we may write: 

and 
2 2  

kZ 

This separation of the depth of penetration into its transverse and 

longitudinal parts is instructive but can lead to some interpretational 

difficulties. These will be pointed out in the following discussion, 

In Sections (4.4) and (4.5), we obtain the large f3 limit of 

Equations (178) and (179). We will restrict our attention to the case 

where w < w 

intuitive significance otherwise. 

since the concept of a penetration depth loses its 
- P  
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4 . 3  Imaginary Transverse and Longitudinal Roots and the Concepts 

of Weak and Strong Spatial Dispersion 

The transverse and longitudinal depths of penetration given by 

Equations (178) and (179) are each composed of a "pole" and a "cut" 

contribution. The pole contributions arise from the roots 'cT and 'cL . 
These roots are functions of 8 , w 2/w2 and 8 . In this section, P 
we obtain the large 8 limit of K~ and 'cL valid in two significantly 

different ranges of up /w 2 2  

4 . 3 . 1  K~ and K Under Weak Spatial Dispersion. 

Imaginary transverse and longitudinal roots can be obtained from 

L 

the approximate expressions for AT(ik2) and k(ik2) e We first 
2 2  2 2 consider the limiting case k2 c << u (6 - cos 8) . It is shown in 

Appendix E that for this limit, AT(ik2) and AL(ik2) may be written 

as : 

and 

2 2  where 6 f / k22c2 + w cos 8 and K may now 

be derived from Equations (180) and (181). Using the asymptotic form 

of the K (8) functions and keeping terms up to 8-l , we find: 

. The quantities K T L 

n 



- 69 - 

2 2 
2 w 

IK,I & w (1 - 3 (1 +5]-1 - cos e 

and 

. w  8 1 2 2  2 - (1 + - - w /up ) - cos e IK,I = c J3 28 

To understand t h e  meaning of t h e  s t rong  inequal i ty  t h a t  forms 

t h e  b a s i s  of t h i s  approximation, w e  impose t h e  requirement 

2 2 2 2  
OI ( 6  - COS e)  >> k2 c 

on the  roo t s  {K,I and ]KL l  and f ind :  

The quant i ty  $ p2 i s  the  average d is tance  covered by an e l ec t ron  

during one period of f i e l d  o s c i l l a t i o n .  Since I K I -' charac ter izes  

an exponential  damping length,  w e  see t h a t  t he  approximation requi res  

the  pene t ra t ion  depth t o  be much l a r g e r  than t h e  average d is tance  

covered by an e l ec t ron  during one period. The e l ec t rons  experience 

only a weak gradien t  i n  electric f i e l d s  i n  one period. 

e f f e c t  of t h e  electric f i e l d  on the p a r t i c l e  is near ly  loca l .  

Thus, t h e  

This 

s i t u a t i o n  i s  r e fe r r ed  t o  as weak s p a t i a l  dispers ion.  The t ransverse 
n n  

roo t  gives  rise t o  weak s p a t i a l  d i spers ion  when 8 >> LC) L / w L  ; t he  
2 P 

longi tudina l  when 8 >> . 2 2  2w2(2w /w .+ 1 )  
P 
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Fina l ly ,  w e  note  t h a t  t h e  t ransverse roo t  has a weak temperature 

dependence whereas the  longi tudina l  roo t  is  s t rongly  temperature 

dependent. This behavior can be  q u a l i t a t i v e l y  explained as follows. 

There e x i s t  two types of waves i n  the  plasma medium. The longi tudina l  

wave descr ibes  the  organized motion of t he  e lec t rons  whose random 

i n t e r n a l  energy dens i ty  i s  proport ional  t o  the  temperature ( l a rge  6 

l i m i t ) .  These waves are s t rongly  temperature dependent. The second 

type of wave ex i s t ing  i n  the  medium is the  t ransverse  electromagnetic 

wave which does not  give rise t o  charge separat ion.  It is  only weakly 

coupled t o  the  e lec t rons .  Its temperature dependence i s  therefore  weak. 

4.3.2 K T  and K Under Strong S p a t i a l  Dispersion L 
2 2  2 2 When k2 c >> w (6 - cos 0 )  w e  show i n  Appendix E t h a t  

AT(ik2) and AL(ik2) may be w r i t t e n  as: 

n 

and 
2 

where w e  have made use of the  asymptotic form of the  (6) funct ions 

and kept  only the  l a r g e s t  6 contr ibut ion.  Solving Equations (184) 

and (185) f o r  l K T I  and I K , ~  , w e  obtain:  

n 
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2 2  2 2 The condi t ion k2 c >> w (B - cos 6) leads t o  the  requirement t ha t :  

I n  t h i s  case, sur face  e lec t rons  experience l a r g e  s p a t i a l  g rad ien ts  of 

t he  electric f i e l d s  during one per iod of f i e l d  o s c i l l a t i o n .  The e n t i r e  

h i s t o r y  of t he  p a r t i c l e  near t he  sur face  i s  important. This case i s  

r e fe r r ed  t o  as s t rong  s p a t i a l  dispersion. Strong s p a t i a l  dispers ion 

can occur only when up / W  >> Ef a Since w e  assumed t h a t  w >> w 5 
P 

and w >> V , t h e  c o l l i s i o n  frequency, i t  i s  clear t h a t  w e  can expect 

s t rong  s p a t i a l  d i spers ion  only f o r  relativist ic plasmas; i .e . ,  B 2 100 

4.4 Depths of Penet ra t ion  - Weak Spa t i a l  Dispersion 

We begin our  evaluat ion of the  depths of pene t ra t ion  with the  

physical ly  more common case of weak s p a t i a l  dispers ion.  

w e  rewrite Equations (178) and (179) as: 

For convenience, 
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and 

2 2  -2ik- c 

T '  4.4.1 Pole Contribution t o  X 

The pole  cont r ibu t ion  t o  h T  under the  condition of weak s p a t i a l  

d i spers ion  i s  given by: 

cos e 
. c  

w [AT] = - 
2 2  [up /w ( 1  - 5/33) - 1 1  pole  

Under the  s a m e  conditions,  S i l i n  obtains:  

w 
- I p o l e  - 

(1 - wp2/w2) 
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Iri order t o  compare our r e s u l t s  with those given by S i l i n ,  w e  expand 

Equation (189) f o r  t h e  case where wp2/w2 >> 1 and obtain:  

Performing a similar expansion on Equation (190) ,  w e  f i nd  t h a t  w e  

disagree with S i l i n ' ;  1/@ fac to r .  I n  h i s  case ,  t he  1/@ f a c t o r  is 

given by : 

'T * 
4.4.2 Cut Contribution t o  

The cu t  cont r ibu t ion  t o  

Since w e  are i n t e r e s t e d  i n  the  f i r s t  

Equation (E-27), and approximate Equation (187) as: 

h,  may be found from Equation (187). 

cont r ibu t ion ,  w e  make use of B 
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Since 6 i s  l a r g e ,  most of t he  contr ibut ion t o  t h e  i n t e g r a l  occurs f o r  

o2 << 1 , w e  may w r i t e :  

[A,] 
cu t  

4 i w p 2 c 6  

3 T r  w 

00 

0 

2 q. 2 L 

- p3ReZ(p)] + 16~r  wp p6e-2p 
Bw B2w4 

2 (193) 
where w e  made t h e  change of var iab les  p = -2 " . Noting t h a t  

w 2/f3w2 << 1 , w e  may approximate Equation (193) as: 
P 

0 

2 
= -  . 2 i c  E x  1 

w IT 2 B3/2 w 
(194) 

This is  i n  exact agreement with SZlin's  r e s u l t .  
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4.4.3 Pole Contribution to A, . 
The pole contribution to hL under the condition of weak spatial 

dispersion is given by: 

2 sin 8 2 
& C W  

w 2  w /6/3(1 - w 2 2  /up ) + 6 1 - COS 2 i [5 /26- /1-w2/Up 2 ) I  
‘3, J pole 

P 

(195) 
w 2/w2 .- 

2 2  where 6 >> 
2(2w /w + 1) 

P 

Silin gives as a result: 

where 

E(W)  z (1 - w 2/w2) 
P 

and 
2 3w 

a 1 Z P  

6w2 nr 

Equation (196) may be rewritten as: 

1 2 . icsin 0 [X,(Silin) Ipole = 
2 2 - 

2/w2) 440s 0 + @/3(w /w - 1) - 1 
P P 

(197) 
2 2  which he claims is valid when 

not depend on such a restriction. 

frequency, our results differ significantly from those given by Silin. 

1(1 - w /w ) I  << 1 . Our results do 
. P  
In the vicinity of the plasma 
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- 4.4.4 Cut Contribution t o  

The c u t  contr ibut ion t o  A, is  q u i t e  d i f f i c u l t  t o  obtain.  W e  

begin by noting t h a t  most of t h e  contr ibut ion t o  t h e  i n t e g r a l  occurs 

f o r  a2 << 1 when The i n t e g r a l  i n  Equation (188) may be 6 - > 100 . 
approximated as : 

where 

2 
= Bo . 2 and where w e  made the  va r i ab le  change 1.1 - The general  behavior 

2 2  of t h e  integrand R(1.1,~ / w  ) is  shown i n  Figure 8.  Since t h i s  
P 

i n t e g r a l  cannot be  s u i t a b l y  approximated, i t  w a s  numerically integrated.  

Defining t h e  i n t e g r a l  as 

t y p i c a l  values : 

2 2  
Q(W /up ) , w e  obtain t h e  following l is t  of 

2 
P 
W2 / W  Q (W2/Wp2) 

1.00 0.41934 

0.80 

0.50 

0.33064 

0.31234 

0.30 0.33921 

0.10 0.41205 

0.07 0.43950 

0.05 0.48059 

0.02 0.55550 

0.01 0.66289 
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
P 

2 2  Figure 8. R(V,w /W ) Versus ?J With 
P 

2 w /up2 AS a Parameter i 
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Rewriting Equation (198) as : 

w e  may compare our r e s u l t s  with those given by S i l i n .  When w = w , 
he gives:  

P 

W e  ob ta in  Equation (200) with 1 .7  replaced by about 1.67. S i l i n  a l s o  

claims t h a t  t he  i n t e g r a l  can be approximated when w < w and gives 

the  formula: 
P 

(201) 

Our computer r e s u l t s  (see previous page), v a l i d  when w < w , d i f f e r  

s i g n i f i c a n t l y  from values  obtained by using S i l i n ' s  approximate formula. 
P 

4.5 Depths of Penetrat ion - Strong S p a t i a l  Dispersion 

We now seek t o  obta in  the  c h a r a c t e r i s t i c  depths of pene t ra t ion  

f o r  the  case where the  e l ec t rons  experience l a r g e  s p a t i a l  g rad ien ts  of 

t he  electric f i e l d s  during one period of f i e l d  o s c i l l a t i o n .  

s p a t i a l  g rad ien ts  g ive  rise t o  the  anomalous s k i n  e f f e c t ,  

considering the  t ransverse  case. 

These l a rge  

W e  begin by 

'T 4.5.1 Pole  Contribution t o  

The pole  cont r ibu t ion  t o  AT under s t rong  s p a t i a l  d i spers ion  is 

expressed by : 
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['T 'pole 
2c 
3 
- 
/ [@$%] 2/3 - w 2 cos 2 e 

2c 
'L 

S i l i n  obtains  the s a m e  expression. Weibel, who considered only the case 

of normal incidence,  gives:  

H i s  d e f i n i t i o n  of the  sk in  depth i s  somewhat d i f f e r e n t ,  however. 

'T 4.5.2 Cut Contribution t o  

The c u t  cont r ibu t ion  t o  AT under s t rong  s p a t i a l  d i spers ion  may 

be  obtained by f i r s t  rewri t ing Equation (193) as: 

2 3 where w e  defined a 5 2w /Bw2 and made t h e  change of va r i ab le  x = ap ., 

I n  the  case of s t rong  s p a t i a l  dispers ion,  

conclude t h a t  t he  exponentials play a s m a l l  r o l e  i n  Equation (204). W e  

may w r i t e  : 

P 
a >> 1 from which w e  
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2 00 

I 4iwp I x1l3dx 
2 1 + 4Trx - 3 4/3 ['TI c u t  3w Ba 

0 

(205) 

Evaluating t h e  i n t e g r a l ,  w e  obtain:  L* 213. Therefore, 4 3  c -  3 

2/3 24/3 in S i l i n  a l s o  obta ins  Equation (204) with 4's replacing 3 

t he  denominator. 

4.5.3 Pole  Contribution t o  A, . 
The pole  cont r ibu t ion  t o  A, under s t rong  s p a t i a l  d i spers ion  i s  

given by : 

a negat ive quant i ty .  

our separa t ing  the wave's depth of pene t ra t ion  i n t o  i t s  transverse and 

This curious r e s u l t  i s  a d i r e c t  consequence of 

longi tudina l  pa r t s .  

Re[AT + A,] = [AT + Allpole Making use of Equation (202), w e  

ob ta in  : 

The wave's e f f e c t i v e  damping length i s  given by 

2 . 2 c ( l  - s i n  8) Re[AT + A,] = 

AT This i s  a case where w e  must no t  a sc r ibe  physical  s ign i f icance  t o  

and A, individual ly .  
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L '  4.5.4 Cut Contribution t o  X 

The cut  contr ibut ion t o  A, under t h e  condition of s t rong 

s p a t i a l  dispers ion i s  again given by the  general  expression of 

Equation (198). 

performing another numerical integrat ion.  

Typical values of t h i s  i n t e g r a l  can be obtained by 

4 . 6  Model f o r  Non-Collisional Absorption Under Strong Spa t i a l  

Dispersion - Anomalous Skin Effect  

It is usefu l  a t  t h i s  point t o  digress  somewhat from the  formal 

development of the  theory t o  discuss an elementary model on non- 

c o l l i s i o n a l  energy absorption. To s implify our ca lcu la t ions ,  w e  assume 

t h a t  the  e l ec t ron ic  state i s  described by the  non- re l a t iv i s t i c  Maxwell- 

Boltzmann d i s t r i b u t i o n  function. W e  a l so  restrict  our a t t e n t i o n  t o  the  

case of s t rong s p a t i a l  dispers ion;  i . e . ,  the  dis tance d covered by an 

average surface e lec t ron  during one period of f i e l d  o s c i l l a t i o n  is  much 

l a r g e r  than the  wave's depth of penetrat ion 6 a As a f i n a l  s impl i f i -  

cat ion,  w e  character ize  the  e l e c t r i c  f i e l d  within the  plasma by a s t e p  

funct ion model; i .e. ,  
- 
E = E g + E G  ; O < x < 6  - -  

X z - 
E = O  ; 6 < x < a  

A surface e lec t ron  t rave l ing  toward t h e  in t e r f ace  with an 

x-component of ve loc i ty  v en ters  and leaves t h e  sk in  depth region 
X 

~ If to << L = x- , such an e lec t ron  sees a 28 =-  
to w - 2lT i n  a t i m e  

s t a t iona ry  e l e c t r i c  f i e l d .  Here, w e  have the  mechanism f o r  an energy I V X l  I 

exchange. The energy of t he  e lec t ron  before enter ing the sk in  depth 
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m 2 + v + vz22) . The o v e r a l l  change i n  v X is  
El = Z(Vxl Y 

region is  

zero s ince  t h e  e l ec t ron  accelerates (decelerates)  i n  the  x d i r ec t ion  

upon en ter ing  t h e  6-region and dece lera tes  (acce lera tes )  i n  t h e  

d i r ec t ion  upon leaving. The change i n  t h e  vz component of ve loc i ty  

is  given by: 

x 

The e l ec t ron  s u f f e r s  an acce lera t ion  o r  dece lera t ion  i n  the  z di rec t ion ,  

depending on whether i t s  i n i t i a l  v 

E 

by : 

ve loc i ty  w a s  i n  t h e  d i r ec t ion  of z 

o r  not.' The corresponding change i n  t h e  e l ec t ron ' s  energy is  given 
2 

A l l  e lec t rons  with an x component of ve loc i ty  d i rec ted  toward the  

i n t e r f a c e  and s a t i s f y i n g  the  inequal i ty  

t h i s  energy exchange. 

Iv I >> 28w p a r t i c i p a t e  i n  
X 

The change i n  the  plasma's i n t e r n a l  energy may 

be wr i t t en  as: 

Since Fo is i s o t r o p i c  i n  ve loc i ty ,  we obtain:  
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A 

x l  "-00 v 

"X1 

Similarly,  w e  may obta in  an expression f o r  t h e  change i n  the  

x component of t he  energy cur ren t  density . Following the  s a m e  
X 

reasoning as given above, w e  w r i t e :  
w w w  

n w 2~ 262 X o p  z 
21T dvX 

- - 

x l  V 

We note  t h a t  although the  acce lera t ions  imparting energy t o  the  e lec t rons  

a c t  i n  the  z d i rec t ion ,  t he re  r e s u l t s  a component of Ac i n  the  

x d i r ec t ion .  This i n t e r a c t i o n  gives rise t o  a t o t a l  energy cur ren t  

density propagating t o  i n f i n i t y .  
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4.7 Fourier Series Representation - Slab Problem 

The interaction of a p-polarized electromagnetic wave with a 

plasma slab was investigated in Section 3 and expressions for the 

electric and magnetic fields set up within the medium were obtained. 

These general results are given in Equations (142) through (144). They 

still remain in a form which makes a physical interpretation difficult. 

In this section, we alleviate this difficulty by finding the equivalent 

Fourier series representations for these field solutions. The resulting 

expressions then lend themselves to some physical interpretations. We 

begin our discussion with Equation (142). The quantity Ex(x) is given 

in terms of the C' and Ci contours. We recall that the CL and CT 

contoiirs were shifted so as to avoid the zeros of sink a which lie 

along the real k axis. The equivalent Fourier series representation 

for Ex(x) can be obtained by simply deforming (individually) the 

and Ci contours such that the resulting closed contours (individually) 

enclose the entire cut k plane and, thus, all the singularities of 

[sinkxa] e The quantity Ex(x) is, therefore, given by: 
nv 

k x a  = - 

L 

X 

X 

ci 

X 
-1 

Ex(x) = - 2l~i 1 residues evaluated at 

The minus sign is due to the counterclockwise contour deformation. The 

residues F(;) are found by evaluating: nr 

-ik a 
k k c ikxx [B (o)e 
21T 

x - By(alI 
x z  

X 
2 2 F(kx) f - e 

(kx + kZ 1 

nv at k = -  . We note that, in the vicinity of a zero, ~a 

nv sink a sin nv + a cos k a 
X x I n.rr(kx - k- x a  
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= a(-l)n(kx - n.rr/a) 

We follow a procedure given by Ozizmir and w r i t e :  

w + 1 

A (E - i6nc) T a  

where 

and 

6 = - I . -  n.rr < - a. 
n a 

and 

6 n = 0 ;  - a o < -  IITr a < a. 

The quant i ty  6 i s  a bookkeeping symbol t o  remind us t h a t  hT(kx) and 

-\(k ) are discontinuous along the  real k a x i s  when Ikx/ > ; cos0 . 
n 

w 
x X 

Let t ing  E -f 0 and making use of Equations (B-5) and (B-6) ,  w e  

f i n d  : 
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The quant i ty  E (x) is found i n  a s i m i l a r  way. We obtain:  
Z 

Fina l ly ,  w e  f ind :  
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We are now in a position to study the transverse and longitudinal 

geometrical resonances that can be supported by a hot plasma slab of 

thickness a . 
4.7.1 Geometrical Resonances. 

In order to make further progress on the slab problem, we note 

that Ex(x) and EZ(x) become infinitely large as AL(y) and 

go to zero. Similarly, B (x) becomes large without bound as A (E) Y T a  

goes to zero. In order to understand the physical significance of these 

resonances, we obtain the large f3 approximation to the roots of 

A (=) and . A complete analysis of these resonances would 

require a rather detailed study. 

nv 
T a  

The following investigation is 

incomplete in that it only treats the most general aspects of the 

problem. 

nv 4.7.2 Zeros of AT(y-) . 
The approximate zeros of A (z) may be found by taking the T a  

large f3 limit of Equation (E-3). We find: 

2 2 2  2 2 - w cos e + w  n v c  
2 P a 

o =  

It is convenient first to express Equation (218) in terms of the 

incident waves ' wavelength. We define a modified wavelength 4 as 

4f E A / ~ I T  = c/w and obtain from Equation (218) : 

n - A  
$ 2  e 2 2  2 ' Y  n 2n IT w P 

$a2 
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where 

and 

2 2 2  2 2 4n IT c w COS 8 
=" 

Pa2 
aa 

'n - 

o awcos0 and where 0 < n < - = 
IT ITC 

This expression i s  considerably s impl i f ied  by noting t h a t  

A ; i .e. ,  n n 

2 2 2  
+ w  (1- n n c  

a 2 P 

2n1~cw cos0 
P 

J'E- a 

Basically,  t h i s  means t h a t  

2n1~cw cos0 
w 2  >> - 

4 J a  P 

Since 

where u and h, is  the  Debye length,  t he  above inequal i ty  

then reduces to :  

1 >> 21~ncose - a 

where 

- . wacose - 
("'max C 
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This inequality under its worst condition requires that: 

which is in essence the condition of a "sharp boundary" that we assumed 

existed throughout the development of this work. 

in Equation (220) is always assumed valid, we approximate Equation (219) 

as : 

Since the inequality 

A transverse geometrical resonance occurs when the plasma's electrons 

reradiate in phase with the incident electromagnetic wave. 

nv 4 . 7 . 3  Zeros of AL(~) . 
The approximate zeros of A (2) L a  may be found by taking the 

large (3 limit of Equation (E-6) and setting the results to zero. 

These roots are given by: 

n - c  2 n 
2 2  A =  Y 

6n v n 

$a2 

where 
rl 

I (112 -  COS%) 
B cn [l + 

and 

2 2 2  - 1 2 ~  c n 
2 2  

- 
$a up Dn - 
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Equation (222) can be simplified under certain limiting ,-, cases. We will 
2 2  

consider one of these. When Cn >> Dn ; i.e., - 2 
Wn 
iJ Equation (221) may be written as: 

As expected, the zero temperature resonance occurs when w = w . P 
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5. Conclusions 

In the foregoing, a relativistic kinetic theory description of 

the interaction of a plane p-polarized electromagnetic wave obliquely 

incident on a hot plasma half space and a plasma slab was developed. 

The analysis was based on the use of the linearized relativistic 

collisionless Boltzmann equation. The collisionless approximation for 

a hot tenuous plasma requires that w >> vei where 

3 with lnfl 10 , Te in degrees Kelvin and n in electrons/m The 

implication of this expression becomes clear from Table 1 where the 

collision frequency is given for n = 10 /m and several temperatures. 18 3 

18 3 Table 1. Values of V versus Te with n = 10 /m ei 

Te, (OK) 
-1 (set 'ei 

5,9 x 10 36.2 lo8 

lo6 5.9 x 10 

lo4 5.9 x 10. 

4 
7 

3.62 x 10 

3.62 x 10 

3 

5 

10 The corresponding plasma frequency is w = 5.65 x 10 /sec. Recalling 

that the strong spatial dispersion analysis requires that 
P 

w 2/w2 >> B , 
P 

we find that this part of the analysis should be valid so long as 
c) 

4 For Te - > 10 and n = 1018/m3 , such a frequency range always exists. 
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A second condi t ion which must be s a t i s f i e d  i n  order  t o  use t h e  

c o l l i s i o n l e s s  theory f o r  sk in  depth ca lcu la t ions  is t h a t  t he  mean f r e e  

path f o r  c o l l i s i o n s  R be  l a r g e  compared t o  the  sk in  depth. For 

n = 101'/m3 and T e  = 10 K , R 2 cm. This i s  approximately the  

same s i z e  as the  anomalous s k i n  depth. 

40 

Measurements of t he  anomalous s k i n  effect have recent ly  been 
15 , 16 

reported by Kofoid. However, these experiments v i o l a t e  the  condi- 

t i o n  w > vei and our theory cannot be used without modification. To 

the  author 's  knowledge, no experiments have y e t  been performed when 

w > v .  

I n  the  present  i nves t iga t ion ,  t he  specular  r e f l e c t i o n  boundary 

condi t ion w a s  used. This condi t ion played a s i g n i f i c a n t  r o l e  i n  

s implifying the  mathematical development of t he  theo re t i ca l  model. 

Such a condi t ion is  conventionally used t o  descr ibe the  r e f l e c t i o n  -of 

an e l ec t ron  from a plasma sheath as found, f o r  ins tance ,  a t  the w a l l s  

of a discharge.  A d i f f e r e n t  boundary condi t ion t h a t  is  appropriate  f o r  

p a r t i c l e  generation near t he  w a l l  is the  d i f fuse  boundary condition. 

Here, p a r t i c l e s  coming from the  body of  t he  plasma are absorbed a t  the 

boundary and new p a r t i c l e s  with a d i f f e r e n t  ve loc i ty  d i s t r i b u t i o n  are 

emitted. The sharp boundary requi res  t h a t  t he  incoming wave experience 

a sharp change i n  propagation media. This requi res  t h a t  

where n is the  e l ec t ron  densi ty .  For a sheath boundary, t h i s  would be 

approximately s a t i s f i e d  by X >> X the  Debye length.  
D y  
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Fina l ly ,  w e  should mention t h a t  t h e  theory makes no provision 

f o r  t he  c rea t ion  and des t ruc t ion  of p a r t i c l e s  which would occur i n  

thermonuclear r eac t ions ,  nor does i t  provide a means of t r e a t i n g  the  

Bremsstrahlung r a d i a t i o n  f i e l d s  expected t o  be important i n  high 

temperature devices. 

2 Several extensions of t h i s  work are suggested. S i l i n  and Fetisov 

inves t iga t ed  t h e  pene t ra t ion  of an obliquely inc ident  s and 

p-polarized electromagnetic wave on a hot plasma ha l f  space f o r  both 

specular  and d i f f u s e  boundary conditions,  bu t  gave no de r iva t ion  f o r  

t h e i r  f i e l d  so lu t ions  wi th in  t h e  medium. 

t o  be given f o r  t he  case of d i f f u s e  r e f l e c t i o n  of e l ec t rons  whose 

equilibrium state is described by the  r e l a t i v i s t i c  Maxwell-Boltzmann 

d i s t r i b u t i o n .  S i l i n  claims t h a t  t he  absorption coe f f i c i en t  under weak 

s p a t i a l  d i spers ion  i s  g r e a t e r  by a f ac to r  of f3 f o r  d i f f u s e  r e f l e c t i o n  

i n  t h e  l a r g e  f3 l i m i t .  Stepanov determined t h e  depth of pene t ra t ion  

of a c i r c u l a r l y  polar ized  electromagnetic wave normally inc ident  on a 

plasma h a l f  space f o r  t he  case where the  ex te rna l  magnetic f i e l d  i s  

perpendicular t o  the  plasma boundary. 

k i n e t i c  equations t o  descr ibe  ion  and e l ec t ron  behavior and used the  

specular  r e f l e c t i o n  boundary condition f o r  both ions and e lec t rons .  

Again, no devia t ion  w a s  presented. 

d i f f u s e  absorption coe f f i c i en t  can be as l a r g e  as f3 t i m e s  t h a t  f o r  

t he  specular  case, it would be of i n t e r e s t  t o  apply the  d i f f u s e  boundary 

condition t o  Stepanov's problem. 

Such a der iva t ion  has y e t  

1 

1 7  

H e  used t h e  n o n - r e l a t i t i v i s t i c  

Considering S i l i n ' s  c l a i m  t h a t  the  

F ina l ly ,  w e  should mention t h a t  our 
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formulation lends i t s e l f  t o  t he  k i n e t i c  theory desc r ip t ion  of t he  

sur face  wave-body wave problem’? However, t he  ana lys i s  of AT(kx) and 

AL(kx) i s  complicated by the  f a c t  t h a t  (wy - k u can be negative. z z  
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APPENDIX A 

In  obtaining Equations (12) and (13), w e  used: 

aFo 3 u -  du 1 aU, 
3 

(YO.) - kil l  

aFo 3 u -  du 3 aU, (yw - I kUl) 
0 (A-1) 

Since u1 and u3 are "complex ve loc i t ies , "  it is  not evident t ha t  

Equation (A-1) holds. The proof follows. Rewriting Equation (A-1) i n  

the  o r ig ina l  Cartesian system, w e  obtain: 

where 

and 
aFo 3 du 
=L 

Aij - I y:uFkxux - kZu2) 

(A-2) 

(A-3) 

(A-4) 

The propert ies  of A are studied i n  Appendix B. Using Equation (B-17) 

i t  is found tha t  
i j  

R+(kl) = R-(kl) = 0 (A-5) 

which holds f o r  a l l  kl E Re(kx) . 
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Rewriting 

it is clear that 

R(kx) dkx = R(kx) dkx = 0 9 (A-7 1 

c1 c2 
where C1 and C2 are the closed contours shown in Figure 9. Taking 

the limit as p + 8 and letting the horizontal line integrals coalesce 

onto the real kx axis, we conclude from Morera's theorem that R(kx) 

is everywhere analytic. Since R(k ) is everywhere bounded, we X 

conclude from Liouville's theorem that 

R(kx) = constant = 0 
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k plane 
X 

Figure 9. Closed Contours C1 and C2 i n  k Plane 
X 
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APPENDIX B 

B.l Cut Analysis of k(k and %(kx> 
X 

It is clear from the definitions of AL(kx) and AT(kx), 

Equations (20) and (21), that these functions become discontinuous 

somewhere along the real k axis. In order to locate the extent of 

the corresponding cut(s) in the k plane, we focus our attention on 

a typical integral entering in the definitions of these functions. 

X 

X 

Making use of the definition of A. ~ (k ) given in Equation (A-4) and 

the Maxwell-Boltzmann-(Jcttner) distribution to describe the equilibrium 
1J  X 

state, we find: 

where u and u are either u or u Calling kl the real part 
i j X z 

of k , we define the following useful functions: 
X 

A .- + (+k ) 5 lim Aij(kkl tis) 
iJ - 1  Y 

E+O 

Fo , where k > 0 and E > 0 Making use of the isotropic nature of 1 
we readily obtain: 

+ - 
A XZ (kl) = - A XZ (-kl) 

03-31 
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Writing the dispersion functions in terms of the 

functions and using Equations (B-3) and ( B - 4 ) ,  we find: 

A..(kx) 
1J 

(B-5) 

Since k is the only complex number entering into the 
X 

definitions of AL(kx) and A (k ) , it is clear that: T x  
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W e  conclude from Equations (B-7) and (B-8) t h a t  AL(kx) and 

l$(kx) are discontinuous across t h e  real k ax i s  whenever these  

functions take on complex values f o r  kx real. To insu re  s ing le -  

valuedness, a cu t  is  sa id  t o  e x i s t  along t h a t  p a r t  of t he  real k 

ax i s  on which k ( k  ) and l$,(kx) are complex. 

X 

X 

X 

B . 2  Roots of t h e  Dispersion Functions 

Given t h a t  K i s  a root  of t he  equation $(kx) = 0 and using 
T * * 

-KT t he  i s o t r o p i c  na ture  of F , i t  follows t h a t  - K ~  , K~ , and 

are a l s o  roots .  S imi la r ly ,  w e  f i nd  t h a t  i f  K~ i s  a root  of 

A (k ) = 0 then -K KL , and - K ~  are a l s o  roo t s .  

0 

* * 
L Y  L x  

The loca t ion  of these  roo t s  i n  t h e  complex k plane is  

determined by mapping AL(kx) and AT(kx) and applying the  argument 

p r i n c i p l e  t o  the  r e s u l t s .  

X 

+ B.3 Evaluation of A (kl) ij 

I n  order t o  analyze the  functions hL(kx) and AT(kx) on the  

real k-- a x i s ,  i t  i s  use fu l  t o  reduce the  volume i n t e g r a l  de f in i t i ons  
x 

of these  functions t o  s i n g l e  i n t e g r a l  de f in i t i ons .  By d e f i n i t i o n ,  

I n  t h i s  ana lys i s ,  i t  i s  convenient t o  express t h e  denominator of 

With t h i s  t he  above integrand as an i n t e g r a l  over a damped plane wave. 

goal i n  mind, w e  consider: 
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1 = kl 1 
(kl + ie) 2 2  

n(wy - k u ) - klux - i6 yw - (kl+is)ux - kzuz 

where 

klL + E' 

and where we used 

Equation (B-9) may then be rewritten as: 

00 

I 

where 

(B-11) 

-- 
-By,-i(wy - k*u)t 

3 = iJ uiuje Y du ¶ 

- 
U 

(B-12) 
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- -  

with k*u defined as lim (k +iE)u + kzuz . Rewriting Equation (B-12) 1 X 
€-to 

as : 

n + i a L ~  Xij (klYt) = - - 2 akiak 
t j 

(B-13) 

A 
- 

and going to a polar coordinate system with 

axis, we obtain: 

k (real) along the uz 

m kt Y 

0 

where y kct 

a f 8 + iwt 

From V o l .  1, p. 75, of the Bateman Manuscript, we find: 

(B-14) 

(B-15) 

where 
- Jk2c2t2 + (8  + iwt) 2 z =  

Inserting this result into Equation (B-13) and performing the 

differentiations, we obtain: 

K2 (2) K (2) 

iJ 
5 k k.c t 1-1 . (B-16) $..+(kl,t) = 4~ic [ 6ij 7 - 

z z 1J 

Equation (B-ll), therefore, becomes: 
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This derivation follows that given by Ozizmir. 

B.4 Proof that AT(+ikz) + wAL((+ikz) = 0 

Writing AL(kx) and A (k ) in terms of the A..(k ) functions 
T x  1J X 

and using Equation (B-17), we obtain: 

(B-18) 
J 

0 
and 

M 

+ AT (kl) = k2c2 - w2 + dt (B-19) 

0 W 

Calling Q(kx) the analytic continuation of dt into 
0 ?p 

the upper k plane and T(kx) the continuation of 
X co 

dt into the upper k plane, we readily find: 
X 

(B-20) 

(B-21) 
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Therefore, 

S imi la r ly ,  w e  can show tha t :  

(B-22) 

(B-23) 

+ B.5 Analysis of AT (kl) 

+ 
X 

In  order  t o  l o c a t e  the  cu t s  of A (kl) along the  real k 

1 

T 

i n  t e r m s  of i t s  real and + h, (k ) a x i s ,  i t  i s  use fu l  t o  express 

imaginary p a r t s .  With t h i s  goal  i n  mind, w e  def ine  a new funct ion I (k )  

as : 
co 

K2(Z) 
I (k )  E - a t  J 0 z2 

(B-24) 

2 When (k2c2 - w ) > 0 , w e  introduce a new va r i ab le  of in tegra t ion :  

and rewrite Equation (B-24) as: 

*io 

I ( k )  = - 
(*2 + o2 + 1) 9 

io 

where 

(B-25) 

(B-26) 

(B-27) 
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Deforming the original line integral as shown in Figure 10,we obtain as 

co 

dx 
1 K 2 ( 8  -) 

0 

I(k) = - Bw (x2 + o2 + 1) 

K2(B m) 0 

2 2 dY 
(0 + 1 - y )  

0 

2 When (k2c2 - w ) < 0 , we introduce a ne1 

integration: 

and rewrite Equation (B-24) as: 

where 

variab 1 

(B-28) 

of 

(B-29) 

(B-30) 

Deforming this line integral as shown in Figure 11 and letting R -3 00 , 

we obtain: 
CQ 

-2 K2(8 J x 2  + 1 - 0 
dx 2 I (k)  = - iBw (x + 1 1 Z2) 

0 

(k-31) 
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io  

I) plane 

f 

R 

Figure 10. Contour Deformation i n  Complex $ Plane 

(k2c2 - w2> > 0 When 
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Figure 11. Contour Deformation in Complex q Plane 

When (k 2 2 - a 2 )  c < o  
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To summarize, t he  ana lys i s  of $+(kl) can be divided i n t o  two 

2 p a r t s .  When (k2c2 - w ) < 0 , w e  have: 

co L Z c - 7 )  
dx- * 

(x2 + 1 - G2) 
(B-32) 

I K2(B gaw; + 2 2  AT (kl) = (k12 + kZ ) c  - w2 + K2(BT 

0 

+ When (k2c2 - w2) > 0 , AT (kl) may be w r i t t e n  as: 

0 
+ where Im[AT (kl)]  may be in tegra ted .  We obtain:  

B.6  Analysis of 

+ 
(k ) 1 proceeds along the  very s a m e  l i n e s  as The ana lys i s  of 

t h a t  ou t l ined  f o r  $+(kl) e To avoid r e p e t i t i o n ,  w e  simply state the  

2 2  + r e s u l t s .  When (k c - 3) < 0 , AL (kl) may be  w r i t t e n  as: 
co 

dx 
+ BG3w x K2(B l27-T) 

* 2 -2 312 
(x + G I  

AL (kl) = w - 1 
0 

OK2 (6) (B-35) 
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2 

When (k2c2 - w ) >  0 , we obtain: 

o 

2 3/2  

(y2 + a2 + 1) K 3 ( p  
2 (a + l - Y )  

0 

2 2 

I ,a 

CO 

(a + 1 - x ) K3(p $x2 + a2 + 1) 
dx 

(x2 + o2 + 1l3I2 
0 

(B-36) 

+ Integrating the expression for I m C k  (kl)] , we obtain: 

(B-37) 

It is therefore clear from Equations (B-7) ,  (B-S), (B-33) and 

(B-36) that AL(kx) and AT(kx) are discontinuous across that part of 

the real axis defined by lkxl > c cos 8 E a . The corresponding cuts 

are shown in Figure 2. 

w 
0 

B.7 Mapping of A,(kx) -- Location of the Roots 
The number and location of the zeros of the dispersion functions 

can be found by the argument principle. 

the analysis o f  the somewhat simpler transverse dispersion function. 

We first turn our attention to 
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A s  kx completes one tour  along C1 (Figure 12) , $(kx) t w i c e  

t r ave r ses  the  contour C2 (Figure 13). Since 

w e  f i nd  t h a t  t he re  are always two roots  of 

cu t  k plane. I n  mapping A (k ) , w e  made use of t he  cu t  proper t ies  

of t h i s  funct ion given i n  Equations (B-6) and (B-8). 

does not  change s i g n  as kl v a r i e s  from 

+ 
Re[AT (kl)]  

behavior Re[AT (kl)]  w a s  shown i n  Figure 12 .  W e  found t h a t  

$(kx) = 0 i n  the  e n t i r e  

X T x  + 
Since Im[AT (kl)]  

+ w , t he  exact behavior of 
aO 

i s  not  c r i t i c a l  t o  t h i s  ana lys i s .  Only the  general  

+ 
J( * 

K and -K are a l l  roots  of AT(kx) = 0 . The f a c t  T -K T '  T y  T K 

t h a t  only two roo t s  e x i s t  implies t h a t  these  roots  are e i t h e r  real o r  

pure imaginary. When real, they l i e  i n  t h e  open i n t e r v a l  (-ao,ao) . 
The loca t ion  of t hese  two roots  can be determined by performing 

one add i t iona l  mapping as shown i n  Figures 14 and 15 where, f o r  

i l l u s t r a t i v e  purposes, AT ( 0 )  

t o  t he  r i g h t  of t he  o r i g i n  i n  the  hT(kx) plane. 

+ (point  1 i n  Figure 15) w a s  shown ly ing  
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c 
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In  t h i s  second mapping, w e  made use of the  f a c t  t h a t  

where 

dY 

00 
2 65 w 2 

.., 2 K2(6)  A, (0) = - - 
*O 

+ w 

0 

and 

1 5 = - - -  
0 cos e 

(B-39) 

(B-40) 

(B-41) 

A s  kx makes one tour  of t h e  contour C 3  , %(k ) t r aces  one c i r c u i t  

of contour 

root  of f$,(kx) = 0 i n  the  upper k plane. A s imi l a r  ana lys i s  shows 

the  presence of a pure imaginary root  i n  lower k plane. 

X 

C4 , thus ind ica t ing  the  exis tence of one pure imaginary 

X 

X 

B.8 Summary on Roots of AT(kx) = 0 

I )  $(kx) = 0 

k plane. 

always has two zeros i n  the  en t i r e ' ku t "  

X 
+ 11) These roots  are pure imaginary when AT (0) > 0 e 

111) They are r e a l  and i n  the  open i n t e r v a l  (-ao,ao) otherwise. 

B.9 Mapping of !+,(kx) -- Location of t h e  Roots 

Finding the  number and loca t ion  of t he  roots  of A,(kx) follows 

the  same procedure as t h a t  given f o r  A (k ) . A s  kx completes one T x  

tour  along C1 (Figure 12) ,  A (k ) descr ibes  the  contour C5 shown 

i n  Figure 16.  I n  mapping A (k ) , , w e  used the  cut  proper t ies  of t h i s  

L x  

L x  
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Figure 16. The C5 Contour 
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func t ion  given i n  Equations (B-5) and (B-7) and assumed t h a t  

where 

AL(ao) < 0, 

(B-42) 

Equation (B-37) w a s  a l s o  used. 

Since one complete c i r c u i t  of k on contour C1 corresponds t o  
X 

two encirclements of the  o r i g i n  i n  t h e  h (k ) plane, w e  conclude t h a t  

t he re  e x i s t s  two zeros of k ( k x )  i n  the  e n t i r e  cu t  k plane when 

%(ao) < 0 

zeros of 

real, they l i e  i n  the  open i n t e r v a l  

L x  

X 

and none otherwise. From our previous d iscuss ion  on t h e  

When k ( k x )  , these  roo t s  must be real o r  pure imaginary. 

(-ao,ao) . 
One add i t iona l  mapping is  necessary t o  determine when these  roo t s  

are real and when they are 

con tour  C3 (Figure IS ) ,  

(Figure 17 ) ,  where w e  used 

imaginary A s  

h (k ) traces 

the  f a c t  t h a t  

L x  

k makes one tour  of t h e  

' 6  

X 

one c i r c u i t  of contour 

+ and, f o r  i l l u s t r a t i v e  purposes, assumed 

one pure imaginary roo t  t o  A (k ) = 0 i n  t h e  upper k plane (and 

i ts  complex conjugate i n  t h e  lower k plane) when AL (0) < 0 , 

AL (0) < 0 . There e x i s t s  

L x  X 
+ 

X 

where 
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hL(kx) plasma 

Figure 17. The C6 Contour 
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(B-4 3) 

and 

B.10 Summary on Roots of A,(kx) = 0 

(I) AL(kx) = 0 has two zeros in the entire cut k plane 
X 

4- when AL (ao) < 0 

Pure imaginary roots exist when + 
(11) AL ( 0 )  < 0 . 

+ (111) The roots are real when AL (0) > 0 

B.ll Interrelation Between Existence of Longitudinal and Transverse 

Roots 

Given that longitudinal roots exist, we may ask whether the 

plasma medium can support all four Combinations of longitudinal and 

transverse discrete modes. To answer this question, we define two new 

and 

1 and note that since 3 = - 
0 case 9 
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Expressed in terms of these new functions, Equations ( B - 4 0 )  and 

( B - 4 3 )  may be rewritten as: 

2 

( B - 4 7 )  

( B - 4 8 )  

Using Equations ( B - 4 6 ) ,  ( B - 4 7 )  and ( B - 4 8 )  and the existence 

conditions for real or pure imaginary roots of AL(kx) and AT(kx) 

given in the Summaries, we conclude that: 

(I) K~ is necessarily real if K~ is real. 

L (11) K~ is necessarily pure imaginary if K is pure 

imaginary. 

(111) KL may be real when K is pure imaginary. T 
(IV) The case where K is pure imaginary and K~ , real, is L 

imp0 s sib le. 

The longitudinal and transverse roots are both pure imaginary 

when 

The longitudinal root is real and the transverse root; pure 

imaginary when 

w L  
P 
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APPENDIX C 

To complete our proof of s e l f  consistency f o r  the  case of t he  

plasma ha l f  space, w e  must show t h a t  

end i n  mind, w e  consider our so lu t ion  f o r  t h e  perturbed p a r t i c l e  

d i s t r i b u t i o n  evaluated a t  x = 0 : 

f(o,ux) = f(o,-ux) . With t h i s  

Since (yw - kxux - kZuz) # 0 f o r  -a < kx < a. , w e  may w r i t e  t h a t :  
0 

C. 
-7 

and 

I- aF aF 

= o  9 (c-3) 

where C. i s  th'e closed contour shown i n  Figure 18. The C contour i s  7 8 
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C, contour 

Figure 18. The C7 Contour 
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For 
I,' i d e n t i c a l  t o  t h a t  given i n  Figure 18 with K replacing K 

i l lus t ra t ive purposes, the longi tudina l  roo t  w a s  shown as pure 

imaginary. Equations (C-2) and (C-3) may be r ewr i t t en  as: 

T 

-7r 

+ n  

aFo aFo 
(-i- + $ 

auX Z 

(dy + i k  u - ' k  u )hL(-ikZ) z x  2 2  
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and 

0 
aF 

0 
aF 

kx aU_) dkx 

0 
aF 

0 

X 

aF 
ink (- + i -) aU 

+ (wy + ikzux - kZuz)AT(- ikz) 

where we made use of Equations (B-5) and (B-6). Inserting these resrrlts 

in Equation (C-1) and using Equations (B-22) and (B-23), we find: 

f(o,ux) - 'f(oy-ux) = 0 . (C-6) 
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APPENDIX D 

$(k ) and k(kx) on the Imaginary k Axis 
X X 

In order to complete our analysis of $(k X 1 and hL(kx> it 

is necessary to evaluate these functions on the imaginary 

The resulting expressions will then be used to obtain approximate values 

k axis, 
X 

for pure imaginary longitudinal and transverse roots. 

format of Appendix By we focus our attention on a typical integral 

entering in the definitions of $(kx) and l$,(k ) on the imaginary 

axis. We define 

Following the 

X 

u.u.e -BY(ju3 
1 Nij - - 

- I y[y: - kzuz - ik 2 x  u ] ’ 

where k was written as kx = ik2 and k2 0 . The subscripts i 

and j may be either x or z a 

X 

Rewriting the denominator as an integral over a damped plane 

wave, we may write: 

and 
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and 

where W(t) is defined as: 

cos k2uxt 3 
e -y(@ + ut) e kzUzt 

du ! Y W(t) E 

- 
U 

Considering the u integration first, we define: 
X 

co 

where 

1 2  2 Y = -  C J c  +u:+,u2+u Y 
Z 

The value of this last integral is given in the Bateman 

Manuscript, p. 17. We may therefore write: 

where 

E $(@ + + k2LcLtL 

Inserting this result into the definition of W , we obtain: 



- 125 - 

03 

W = 2c Il .o~ Jc2 + u + u ‘]e kZuz  du du 
Y z Y Z  

-03 

The u i n t e g r a l  above is given i n  t h e  Table of I n t e g r a l s ,  
Y 

Series, and Products, p .  705. Equation (D-8) may therefore  be w r i t t e n  

as : 

CO 

2nc2 I - c z kzuzt 
dUZ 

e e w = -  
9 Y 

-aJ 

where w e  made use of t he  ha l f  i n t ege r  proper t ies  of Kv(z) . 
The i n t e g r a l  i n  Equation (D-9) may be cast i n  a more amenable 

form by making a change of var iab les .  W e  l e t  uz = c s i n h s  and obtain:  

where 

(D-10) 

(D-11) 

-CO 

and 

q f k c t  
z 

Equation (D-11) may r ead i ly  be in tegra ted  i f  w e  make t h e  f i n a l  change 

of va r i ab le s  : 
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- $ cosh 5 + rl sinh 5 = - A cosh ( 5  - b) ¶ 

where 

and 

b = tanh-l(rl/@) 

We obtain: 

Consequently, 

w = 4TC3 

&?-7 

(D-12) 

(D-13) 

Inserting this result into Equations (D-2), (D-3), and (D-41, we 

N , and NZz These results are then inserted xz readily find Nxx , 
into the definitions of A (ik2) and A (ik2) and yield: T L 
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and 

where 

2 2 2 2 2  
z E /(B + ut) + (k2 - kZ ) c  t 

Equation (D-r5) may also be rewritten as: 

dt Y 
2 

2 AL(ik2) = w - + 2(k2 - kZ 
Z 

0 
(D-16) 

where we have rewritten z as: 

z = Jp2 + 2uBt + 62t2 

and defined 

2 2  2 2  cos 8 + k2 c 

We shall make use of Equation (D-16) in evaluating the approximate 

expressions for K on the imaginary axis. L 
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APPENDIX E 

Appendices B and D were primarily devoted to the evaluation of 

$(kx) and k(kx) on the real and imaginary k axes. The results 

of these calculations are given in Equations (B-32), (B-33), (B-35), and 

(B-36) and in .(D-14) and (D-16). They remain in the form of integrals. 

In this Appendix, we obtain the large p limit of these functions. The 

results are used in Section 4 to obtain approximate values for the 

transverse and longitudinal roots and in the evaluation of the critical 

angle of incidence, These approximate calculations also play a role in 

the evaluation of the "cut" contributions to the transverse and 

longitudinal depths of penetration and in the study of the geometrical 

resonances that arise in the slab problem. By large , we mean 

p i -  > 100 . Physically, this corresponds to a temperature range of 

X 

2 mc 
KT - 

0 5 T 5 5.9 x 10°K 

~ . 1  AT + (ki) and AL + (kl) When (k12c2 - w 2 2  COS 0)  < 0 

Real transverse and longitudinal roots may be found from the 

4- f approximate evaluations of AT (kl) and AL (kl) when 

2 2  (k12c2 - w cos 0) < 0 The integral appearing in Equation (B-32) may 

be rewritten as: 

0 J (x2 + 1) 
(E-1) 

where 
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Integrating Equation (E-1) by parts, we obtain: 

03 

Y 

KO (6) 0 

where the last term of Equation (E-2) is of the order 

Inserting this result into Equation (B-32), we find: 

7 . B 

We note that Equation (E-3) is in agreement with Equation (B-38) as 

kl + a. (5  -t m) . 
calculating the critical angle of incidence. 

+ This approximate expression for AT (kl) is used in 

We apply a similar procedure to obtain an algebraic expression 
+ for A, (kl) . The integral in Equation (B-35) is defined as: 

L 

-2 312 dx (x2 + a ) 0 

Two integrations by parts yield: 

(E-4) 

CO 

x(4a2 - x2 - 5)K2(B m ) d x  
Ko(B) 1 (x2 + z2)7/2 

Rl(B) -2 

6Z3 B2Z5 B2 
T = -  + (20 -3) ,- - - 

0 
(E-5) 
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Inserting this result into Equation (B-35), we find: 

(E-6) 

A s  a check, we note that Equation (E-6) agrees with Equation (B-42) as 

kl -+ a. e 

can exist only if 

We also see from Equation (B-6) that real longitudinal roots 
4- 

hL (ao> < 0 

The real transverse and longitudinal roots may now be derived 

from Equations (E-3) and (E-6). 

E.2 AT(ik2) and AL(ik2) -- Weak Spatial Dispersion 
Imaginary transverse and longitudinal roots may be obtained from 

the approximate evaluations of hT(ik2) and hL(ik2) , Equations (D-14) 

and (D-l6), The integral appearing in Equation (D-14) may be rewritten 

as : 

2 2  2 2  where 6 f /w cos 8 -+- k2 c e We need to approxi- 

mate Equation (E-7) under two significantly different conditions; i.e., 

and wcose < 6 < - -  

when ik2 is near the real k axis and when ik2 is far removed from 
X 

the real kx axis. The corresponding physical situations are discussed 

in Section 4. 



- 131 - 

When u2/rS2 is  much l a r g e r  than xo2 1 / P  

which xK2(8 L7TT) a t t a i n s  i t s  maximum, i t  is c 

t he  x value f o r  

ear t h a t  

(x2 f w2/62)-1/2 

In t eg ra t ing  by p a r t s ,  w e  obtain:  

plays a s m a l l  r o l e  i n  t h e  eva lua t ion  of Equation (E-7). 

I n s e r t i n g  t h i s  r e s u l t  i n t o  Equations (D-14) and (D-161, w e  f ind :  

and 

2 
KO (6) 

AL(ik2) w - wp wK2 (8) [ K1(f3) + 7 { 2 - 3 5 -  I ]  e (E-10) 

As a check on the  i n t e r n a l  consistency of these  approximations, 

w e  no te  t h a t  Equations (E-3) and (E-9) go t o  the  same l i m i t  as 

kl, k2 + 0 . We a l s o  note t h a t  Equations (E-6) and (E-10) go t o  the  

kl,k2 -t 0. AT(ik2) and k ( i k  ) given by Equations (E-9) 2 same l i m i t  as 

and (E-10) a l s o  s a t i s f y  Equations (B-22) and (B-23).  

The roo t s  t o  Equations (E-9) and (E-10) l i e  near t h e  real  k 
X 

a x i s  and give rise t o  weak s p a t i a l  dispersion. 
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E.3 AT(ik2) and AL(ik2) -- Strong S p a t i a l  Dispersion 

F ina l ly ,  we seek approximate evaluations f o r  AT(ik2) and 

X A (ik2) which are v a l i d  when i k 2  i s  f a r  removed from t h e  real k L 
2 2  ax i s .  When w /S << l/f3 , w e  may approximate Equation (E-7) as: 

03 

G G -  dx 
(x2 * 1) 

0 

which may be in t eg ra t ed  t o  give: 

-13 G & -  me (1 + 1, B 

(E-11) 

(E-12) 

Inse r t ing  t h i s  r e s u l t  i n t o  Equations (D-14) and (D-16), w e  obtain: 

2 w w  
AT(ik2) - 62 + @ 6 

and 

(E-13) 

(E-14) 

The roo t s  t o  Equations (E-13) and (E-14) are f a r  removed from the  

real a x i s  and give rise t o  s t rong  spa t i a l  dispersion. 

* 2 2  E.4 ReAL (kl) When (k12c2 - w cos 6) > 0 

I n  order t o  eva lua te  the  "cut" cont r ibu t ion  t o  t h e  longi tudina l  

depth of pene t ra t ion ,  i t  i s  necessary t o  obta in  an approximate expression 

f o r  ReAL (kl) when (k12c2 - w cos 6) > 0 e With t h i s  goa l  i n  mind, 

w e  no te  tha t  t he  i n t e g r a l  appearing i n  t h e  d e f i n i t i o n  of 

+ 2 2  

* 
ReAL (kl) , 

Equation (B-36), may be rewritten as: 
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[rs2(1 + t2) + 1]K3(6 fCT2(1 - E 2 )  + l)dS i - + 1l3I2 
L(G) E CT 

0 

0 (E-15) 

where we made use of the asymptotic form of 

convenient to divide our analysis into two parts, depending on the size 

2 of (5 . In the first region, a2 satisfies the two inequalities: 

2 0 - < 0 << 1 and 0 

a2 = 0 

K3(z) e It is now 

BO2 - < 10 a Expanding $02(1 - t2) + 1 about 
and keeping only the first two terms, we are left with: 

(E-16 ) 
d 

0 

Inserting this expression into Equation (B-36) and using the 

asymptotic expression for K2(P)  , we may write: 

(E-17) 
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where ReZ(1-1) is the real part of the plasma dispersion function2' 

defined as: 

0 
and 

Equation (E-17) plays an important role in the calculation of 

the longitudinal depth of penetration. 
+ We now proceed to obtain the large 6 limit of RehL (kl) when 

2 2  2 2 (k:c2 - w cos e )  > 0 and o is large; i.e., BO 10 e In this 

case, we write: 

L(O) = B30[U(0)  + V ( O ) l  Y 

where 

and 

and where 

(E-18) 

(E-19) 

(E-20) 
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and 

2 
2 5 f3 Jo (1 - C2) f 1 

Integrating the expression for V(o) several times by parts, we find: 

Noting that 

(E-21) 

(E-22) 

we may approximate Equation (E-18) as: 

(E-2 3) 

where we dropped higher order terms. Making use of this result in 

Equation (B-36) we obtain: 

3 

(E-24) 
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which goes to Equation (B-42) in the limit as (T + . As a check on 

the internal consistency of our two expansions for 

that asymptotically, Equation (B-17) becomes: 

+ ReAL (kl) , we note 

2 
3 

Po 

w 
Re\+(k,) b w - (1 + 7) w 

which is in close agreement with Equation (E-24). 

+ To complete our analysis of ReAL (kl) , we obtain the zeros Of 

this function. Equation (E-17) may be rewritten as: 

n 

(E-25) 

where we have defined 

and 

2 In Figure 19> we plot g(p,w2/w ) versus 1.1 for various choices of the 
2 ~ -P 

w 

w 
parameter - and superimpose on the same graph Cp(1.1) versus 1.1 . 
The intersection of these curves corresponds to a zero of 

+ P 
ReAL (kl) . 
+ 

ReAL (kl) We conclude upon examining Figure 19 that the zeros of 

near 1-1 = 1 when w /w < 1/2 . Under these conditions, it is easy 

fall 

2 
P 

to show that the root is approximately given by: 
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0.50 - 

0.46 - 

0.42 - 

0.38 - 

0.34 - 

0.30 - 

0.26 - 

0.22 - 

0.18 7 

0.14 - 

0.10 - 

0.06 - 

0.02 - 

2 2  Figure  19.  (p(1-0 Versus 1-1 and g(p,w /w ) Versus 1-1 
P 

2 2  With w /w as a Parameter.  
P 
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wL - [2 + ReZ(1) + -p ] 
L ,  / ReZ (1) 

A +  
PO 

(E-26) 

where 

ReZ(1) - 1.07616 

E.5  RehT + (kl) When (k12c2 - w 2 2  cos 0) > 0 

In order to evaluate the "cut" contribution to the transverse 

depth of penetration, we must find an approximate expression for 

+ 2 2  ReAT (kl) when (k12c2 - w cos e) > 0 e Since the development follows 

the same lines as that given for + ReAL (kl) , we will simply give the 
results 

2 When a2 satisfies the two inequalities 0 CT << 1 and 
2 0 < Pa < 10 , we find: - 

1 2 w + ReAT (kl) A w pReZ(p) 

men pa2 10 , we may write 

(E-27) 

(E-28) 

+ which goes to Equation (B-38) as a -+a Since ReAT (kl) > 0 f o r  

0 - < 0 
2 < co , we have no need for a more detailed study of this function. 
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